zoukankan      html  css  js  c++  java
  • Permutations

    Given a collection of numbers, return all possible permutations.

    For example,
    [1,2,3] have the following permutations:
    [1,2,3][1,3,2][2,1,3][2,3,1][3,1,2], and [3,2,1].

    Analysis:

    The idea of this classic problem is to use backtracking.
    We want to get permutations, which is mainly about swap values in the list.
    Consider:
    a --> a
    ab --> ab, ba
    abc --> abc, acb, bac, bca, cab, cba.
    ...
    where for the length of n, the permutations can be generated by
    (1) Swap the 1st element with all the elements, including itself.
           (2) Then the 1st element is fixed, go to the next element.
           (3) Until the last element is fixed. Output.
    It's more clear in the figure above. The key point is to make the big problem into smaller problem, here is how to convert the length n permutation into length n-1 permutation problem.

    public class Solution {
        
        public ArrayList<ArrayList<Integer>> permute(int[] num){
           ArrayList<ArrayList<Integer>> result = new  ArrayList<ArrayList<Integer>>();
            ArrayList<Integer> output = new ArrayList<Integer>();
            boolean[] visited = new boolean[num.length];
           getPermutation(0, num, output, result, visited);
           return result;
        }
        
        private void getPermutation(int depth, int[] num, ArrayList<Integer> output, ArrayList<ArrayList<Integer>> result, boolean[] visited){
            if(depth == num.length){
                 ArrayList<Integer> tmp = new ArrayList<Integer>();
                 tmp.addAll(output);
                 result.add(tmp);
            }
            
            for(int i= 0 ; i< num.length; i++){
                if(visited[i])
                    continue;
                visited[i] = true;
                output.add(num[i]);
                getPermutation(depth+1, num, output, result, visited);
                output.remove(output.size() -1);
                 visited[i] = false;
            }
            
        }
    }
  • 相关阅读:
    idHTTP使用代理IP
    Delphi的TRegistry注册表类方法详解
    判断WebBrowser是否加载完成.
    vs2010 安装记
    Delphi中destroy, free, freeAndNil, release用法和区别
    IdHTTP处理HTTP 302遇到的问题
    passcal 多线程例子,线程管理,创建,暂停,中止,等待等。。。
    passcal try嵌套
    passcal 编写多线程程序
    用一个 Byte 数表示 8 个复选框的选择状态
  • 原文地址:https://www.cnblogs.com/RazerLu/p/3536039.html
Copyright © 2011-2022 走看看