zoukankan      html  css  js  c++  java
  • Permutations

    Given a collection of numbers, return all possible permutations.

    For example,
    [1,2,3] have the following permutations:
    [1,2,3][1,3,2][2,1,3][2,3,1][3,1,2], and [3,2,1].

    Analysis:

    The idea of this classic problem is to use backtracking.
    We want to get permutations, which is mainly about swap values in the list.
    Consider:
    a --> a
    ab --> ab, ba
    abc --> abc, acb, bac, bca, cab, cba.
    ...
    where for the length of n, the permutations can be generated by
    (1) Swap the 1st element with all the elements, including itself.
           (2) Then the 1st element is fixed, go to the next element.
           (3) Until the last element is fixed. Output.
    It's more clear in the figure above. The key point is to make the big problem into smaller problem, here is how to convert the length n permutation into length n-1 permutation problem.

    public class Solution {
        
        public ArrayList<ArrayList<Integer>> permute(int[] num){
           ArrayList<ArrayList<Integer>> result = new  ArrayList<ArrayList<Integer>>();
            ArrayList<Integer> output = new ArrayList<Integer>();
            boolean[] visited = new boolean[num.length];
           getPermutation(0, num, output, result, visited);
           return result;
        }
        
        private void getPermutation(int depth, int[] num, ArrayList<Integer> output, ArrayList<ArrayList<Integer>> result, boolean[] visited){
            if(depth == num.length){
                 ArrayList<Integer> tmp = new ArrayList<Integer>();
                 tmp.addAll(output);
                 result.add(tmp);
            }
            
            for(int i= 0 ; i< num.length; i++){
                if(visited[i])
                    continue;
                visited[i] = true;
                output.add(num[i]);
                getPermutation(depth+1, num, output, result, visited);
                output.remove(output.size() -1);
                 visited[i] = false;
            }
            
        }
    }
  • 相关阅读:
    156. Binary Tree Upside Down
    155. Min Stack
    154. Find Minimum in Rotated Sorted Array II
    153. Find Minimum in Rotated Sorted Array
    汉诺塔问题
    算法——二分搜索
    linux内核编程helloworld(中级)
    linux内核入门(1)——基本简介和编译
    linux网络编程概念(一)
    linux配置防火墙
  • 原文地址:https://www.cnblogs.com/RazerLu/p/3536039.html
Copyright © 2011-2022 走看看