zoukankan      html  css  js  c++  java
  • 9.10+9.14+9.16

    9.10
    40+0+60=100 rank 16
    T1 裸的exgcd,然而不会求解的个数了,用解析几何搞的,考试时一堆问题都没调出来。。。
    T2树形dp,f[i][j]表示i这颗子树里选j个黑点的最大收益,像背包一样转移就好了,考试打的暴力,还tm翻车了(0x7f)
    T3神题,至今没改,留个坑以后填吧。。。
    T1

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #define LL long long
    using namespace std;
    LL exgcd(LL a,LL b,LL &x,LL &y){
        if(b==0){
            x=1;y=0;
            return a;
        }
        LL g=exgcd(b,a%b,x,y);
        LL t=x;
        x=y;
        y=t-(a/b)*x;
        return g;
    }
    int main(){
        //freopen("fuction.in","r",stdin);
        //freopen("fuction.out","w",stdout);
        LL a,b,c,d,x,y,ans,numx,numy,T;
        scanf("%lld",&T);
        while(T--){
            scanf("%lld%lld%lld",&a,&b,&c);
            if(a==0&&b==0){
                printf("0
    ");
                continue;
            }
            if(a==0){
                if((c%b==0)&&(c/b>0)) printf("ZenMeZheMeDuo
    ");
                else printf("0
    ");
                continue;
            }
            if(b==0){
                if((c%a==0)&&((c/a>0))) printf("ZenMeZheMeDuo
    ");
                else  printf("0
    ");
                continue;
            }
            if(a<0||b<0){a=-a;b=-b;c=-c;}
            LL d=exgcd(a,b,x,y);
            if(c%d!=0){
                printf("0
    ");
                continue;
            }
            if(a*b<0){
                printf("ZenMeZheMeDuo
    ");
                continue;
            }
            x=x*(c/d);y=y*(c/d);
            if(x<=0&&y<=0){
                printf("0
    ");
                continue;
            }
            if(x<=0&&y>0){
                numy=(y-1)/(a/d)+1;
                if(x==0)numx=1;
                else numx=(-x)/(b/d)+1;
                ans=numy-numx;
                if(ans<0)ans=0;
                if(ans>65535)  printf("ZenMeZheMeDuo
    ");
                else printf("%lld
    ",ans);
                continue;
            }
            if(y<=0&&x>0){
                numx=(x-1)/(b/d)+1;
                if(y==0) numy=1;
                else numy=(-y)/(a/d)+1;
                ans=numx-numy;
                if(ans<0)ans=0;
                if(ans>65535)  printf("ZenMeZheMeDuo
    ");
                else printf("%lld
    ",ans);
                continue;
            }
            if(x>0&&y>0){
                numx=(x-1)/(b/d)+1;
                numy=(y-1)/(a/d)+1;
                ans=numx+numy-1;
                if(ans<0)ans=0;
                if(ans>65535)  printf("ZenMeZheMeDuo
    ");
                else printf("%lld
    ",ans);
                continue;
            }
        }
        return 0;
    }

    T2

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #define N 2050
    using namespace std;
    int e=1,head[N];
    struct edge{
        int u,v,w,next;
    }ed[2*N];
    void add(int u,int v,int w){
        ed[e].u=u;ed[e].v=v;ed[e].w=w;
        ed[e].next=head[u];head[u]=e++;
    }
    int n,m;
    int size[N],fa[N];
    long long f[N][N];
    void dfs(int x){
        size[x]++;
        for(int i=head[x];i;i=ed[i].next){
            int v=ed[i].v;
            if(v==fa[x])continue;
            fa[v]=x; dfs(v);
            size[x]+=size[v];
            for(int j=min(size[x],m);j>=0;j--){
                int minn=max(0,max(j-size[x]+size[v],size[v]-n+m));
                for(int k=minn;k<=min(size[v],min(m,j));k++){
                    long long tmp=(long long)(k*(m-k)+(size[v]-k)*((n-m)-(size[v]-k)));
                    f[x][j]=max(f[x][j],f[x][j-k]+f[v][k]+(ed[i].w*tmp));
                }
            }
        }
    }
    int main(){
        scanf("%d%d",&n,&m);
        int u,v,w;
        for(int i=1;i<n;i++){
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w); add(v,u,w);
        }
        dfs(1);
        printf("%lld
    ",f[1][m]);
        return 0;
    }

    9.14
    70+70+15=155 rank1
    T1 欧拉路,去掉的至少有一个自环或者两条边有公共点(欧拉路需要保证整个图只有0或2个有奇数条连边)需要判边是否连通!最后手贱还扔了10分……
    T2 下底分块的思想 我们要求一个最大的d,满足

    i=1n(ai/ddai)k

    C=k+ni=1ai
    ni=1ai/dC/d 易证等式左边随d增加单调不增,所以按右边分块,可能作为答案的是所有块的右端点,考试打了好多特判骗了70
    T3 神奇的dp….dp[i][j]表示一棵i-超级树,同时有j条点不重复的路径存在的方案数
    枚举左子树和右子树的路径条数l、r,记num=dp[i][l]*dp[i][r],
    什么也不做 dp[i+1][l+r]+=num
    根自己作为一条新路径 dp[i+1][l+r+1]+=num
    根连接到左子树(或右子树)的某条路径上 dp[i+1][l+r]+=2*num*(l+r)
    根连接左子树和右子树的各一条路径 dp[i+1][l+r-1]+=2*num*l*r
    根连接左子树(或右子树)的两条路径 dp[i+1][l+r-1]+=num*(l*(l-1)+r*(r-
    1))
    注意这里的路径都是有向的!
    T1

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    long long ans,in[100005],tot,n,m;
    int fa[100005];
    bool vis[100005];
    int find(int x){
        if(x==fa[x])return x;
        return fa[x]=find(fa[x]);
    }
    int main(){
        scanf("%lld%lld",&n,&m);
        int u,v,fu,fv;
        for(int i=1;i<=n;i++)fa[i]=i;
        for(int i=1;i<=m;i++){
            scanf("%d%d",&u,&v);
            vis[u]=1;vis[v]=1;
            if(u!=v){
                in[u]++;in[v]++;
                fu=find(u);fv=find(v);
                if(fu!=fv)fa[fv]=fu;
            }
            else tot++;
        }
        for(int i=1;i<=n;i++)if(vis[i]){fu=find(i);break;}
        for(int i=1;i<=n;i++)if(vis[i]&&find(i)!=fu){printf("0
    ");return 0;}
        for(int i=1;i<=n;i++)
            ans+=in[i]*(in[i]-1)/2;
        ans+=tot*(m-tot);
        ans+=tot*(tot-1)/2;
        printf("%lld
    ",ans);
        return 0;
    }

    T2

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #define LL long long
    #define N 105
    using namespace std;
    int n;
    LL m,a[N],tot; 
    bool check(LL x){
        LL cnt=0,top=tot/x;
        for(int i=1;i<=n;++i){
            cnt+=((a[i]-1)/x)+1;
            if(cnt>top)return 0;
        }return 1;
    }
    int main(){
        scanf("%d%lld",&n,&m);
        for(int i=1;i<=n;i++){
            scanf("%lld",&a[i]);
            tot+=a[i];
        }
        tot+=m;
        for(LL d=tot;d>=1;--d){
            if(check(d)){printf("%lld
    ",d);return 0;}
            d=(tot/(tot/d+1))+1;
        }
        return 0;
    }

    T3

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #define LL long long
    #define N 302
    using namespace std;
    int n;
    LL f[N][N],num,mod;
    int main(){
        scanf("%d%lld",&n,&mod);
        f[1][0]=1; f[1][1]=1;
        for(int i=1;i<n;i++)
            for(int l=0;l<=n-i+1;l++)
                for(int r=0;r+l<=n-i+2;r++){
                    num=f[i][l]*f[i][r]%mod;
                    (f[i+1][l+r]+=num+2*num*(l+r))%=mod;
                    (f[i+1][l+r+1]+=num)%=mod;
                    if(l+r<=0)continue;
                    if(l==0) (f[i+1][l+r-1]+=num*(2*l*r+r*(r-1)))%=mod;
                    if(r==0) (f[i+1][l+r-1]+=num*(2*l*r+l*(l-1)))%=mod;
                    if(l!=0&&r!=0) (f[i+1][l+r-1]+=num*(2*l*r+l*(l-1)+r*(r-1)))%=mod;
                }
        printf("%lld
    ",f[n][1]%mod);
        return 0;
    }

    9.16
    100+100+40=240 rank3
    T1 贪心找能剩下的最多的
    T2 ans=Cn2n
    T3 竟然是区间dp,二维树状数组也可以水!想到回文那一串东西无法自拔,关键是我什么都不会……看了就要学,不学不要看。。。。
    f[i][j]=f[i+1][j]+f[i][j-1]-f[i+1][j-1]+[i~j是回文串]
    T1

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<cmath>
    #define N 100005
    #define LL long long
    using namespace std;
    struct data{LL a,b,c;}d[N];
    bool cmpc(data a,data b){return a.c>b.c;}
    LL n,tot,ans;
    LL read(){
        LL a=0;char ch=getchar();
        while(ch<'0'||ch>'9')ch=getchar();
        while(ch>='0'&&ch<='9'){a=a*10+ch-'0';ch=getchar();}
        return a;
    }
    int T;
    int main(){
        scanf("%d",&T);
        while(T--){
            tot=0; ans=0; n=read();
            for(int i=1;i<=n;i++){
                d[i].a=read();
                d[i].b=read();
                d[i].c=d[i].b-d[i].a;
            }
            sort(d+1,d+n+1,cmpc);
            for(int i=1;i<=n;i++){
                if(tot>=d[i].b)tot-=d[i].a;
                else{ans+=d[i].b-tot;tot=d[i].c;}
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }

    T2

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #define LL long long
    #define N 1000005
    #define mod 1000000007
    using namespace std;
    LL fac[2*N],n,T,ans;
    LL qp(LL a,LL b){
        LL ff=1;
        while(b){
            if(b&1)ff=ff*a%mod;
            a=a*a%mod;b>>=1;
        }
        return ff;
    }
    LL C(LL x,LL y){
        if(!y||y==x)return 1;
        return ((fac[x]*qp(fac[y],mod-2))%mod*qp(fac[x-y],mod-2))%mod;
    }
    int main(){
        fac[1]=1;
        for(int i=2;i<=2000000;i++)fac[i]=(fac[i-1]*i)%mod;
        scanf("%lld",&T);
        while(T--){
            scanf("%lld",&n);
            printf("%lld
    ",C(2*n,n));
        }
        return 0;
    }

    T3

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #define N 5005
    using namespace std;
    char s[N];
    int len,f[N][N],g[N][N];
    int read(){
        int a=0;char ch=getchar();
        while(ch<'0'||ch>'9')ch=getchar();
        while(ch>='0'&&ch<='9'){a=a*10+(ch^48);ch=getchar();}
        return a;
    }
    int main(){
        scanf("%s",s+1);
        len=strlen(s+1);
        for(int i=1;i<=len;++i){
            g[i][i]=1;
            for(int j=1;;++j){
                if(i+j>len||j>=i) break;
                if(s[i+j]==s[i-j])g[i-j][i+j]=1;
                else break;
            }
        }
        for(int i=1;i<=len;++i){
            for(int j=1;;++j){
                if(i+j>len||j>i) break;
                if(s[i+j]==s[i-j+1])g[i-j+1][i+j]=1;
                else break;
            }
        }
        for(int i=1;i<=len;i++)f[i][i]=1;
        for(int l=2;l<=len;l++){
            for(int i=1;i<=len-l+1;i++){
                int j=i+l-1;
                f[i][j]=f[i][j-1]+f[i+1][j]-f[i+1][j-1]+g[i][j];
            }
        }
        int l,r,T=read();
        while(T--){
            l=read();r=read();
            printf("%d
    ",f[l][r]);
        }
        return 0;
    }
    
  • 相关阅读:
    初步掌握Yarn的架构及原理(转)
    CORS 专题
    WebSocket是一种协议
    InputStream中read()与read(byte[] b)(转)
    listview异步加载sd卡图片
    ListView getView中放置多个item和getItemViewType的用法
    Android ListView异步加载数据
    android sqlite 一次创建多个表
    Android Adapter的getViewTypeCount和getItemViewType
    Android 获取SDCard上图片和视频的缩略图
  • 原文地址:https://www.cnblogs.com/Ren-Ivan/p/7746670.html
Copyright © 2011-2022 走看看