zoukankan      html  css  js  c++  java
  • Euler Sums系列(四)

    [Largedisplaystyle sum_{n=1}^infty (-1)^n frac{H_n}{2n+1}=mathbf{G}-frac{pi}{2}ln(2) ]


    (Largemathbf{Proof:})
    (Largemathbf{Method~One:})
    Using the relation (displaystyle H_{n} = int_{0}^{1} frac{1-x^n}{1-x} mathrm{d}x), we find that the series reduces to

    [egin{align*} sum_{n=1}^infty (-1)^n frac{H_n}{2n+1} &= int_{0}^{1} frac{2}{1-x^2} left( frac{pi x}{4} - arctan x ight) mathrm dx \ &= int_{0}^{1} frac{2}{1-x^2} left( arctan left( frac{1-x}{1+x} ight) - frac{pi (1-x)}{4} ight) mathrm dx \ &= int_{0}^{1} frac{2}{1-x^2} arctan left( frac{1-x}{1+x} ight) mathrm dx - int_{0}^{1} frac{pi}{2(1+x)} mathrm dx end{align*} ]

    For the former one, we use the substitution (displaystyle t = frac{1-x}{1+x}) to obtain that

    [int_{0}^{1} frac{2}{1-x^2} arctan left( frac{1-x}{1+x} ight) mathrm dx = int_{0}^{1} frac{arctan t}{t} mathrm dt = mathbf{G} ]

    The latter one reduces to (displaystyle -frac{pi}{2} ln 2), so the conclusion follows.

    [Largeoxed{displaystyle sum_{n=1}^infty (-1)^n frac{H_n}{2n+1}=color{Blue}{mathbf{G}-frac{pi}{2}ln(2)}} ]


    (Largemathbf{Method~Two:})

    [sum_{n=1}^infty (-1)^n H_n t^n = frac{-ln(1+t)}{1+t} ]

    Let (t=x^2)

    [sum_{n=1}^infty (-1)^n H_n x^{2n} = frac{-ln(1+x^2)}{1+x^2} ]

    Integrating with respect to (x) and interchanging integral and summation we get

    [egin{align*} &sum_{n=1}^infty (-1)^n H_n int_0^1 x^{2n}mathrm dx = - int_0^1 frac{ln(1+x^2)}{1+x^2}mathrm dx\ &sum_{n=1}^infty (-1)^n frac{H_n}{2n+1}=-int_0^1 frac{ln(1+x^2)}{1+x^2}mathrm dx end{align*}]

    In the integral, substitute (displaystyle x= an( heta)):

    [sum_{n=1}^infty (-1)^n frac{H_n}{2n+1} = 2int_0^{frac{pi}{4}}ln(cos heta) mathrm d heta ]

    The remaining integral is evaluated using a fourier series:

    [egin{align*} sum_{n=1}^infty (-1)^n frac{H_n}{2n+1} &= 2 int_0^{frac{pi}{4}}left( -ln(2)-sum_{j=1}^infty frac{(-1)^j cos(2j heta)}{j} ight)mathrm d heta \ &=-frac{pi}{2}ln(2) -2sum_{j=1}^infty frac{(-1)^j}{j}int_0^{frac{pi}{4}}cos(2j heta) mathrm d heta \&= -frac{pi}{2}ln(2)+sum_{j=1}^infty frac{(-1)^{j+1}}{j^2}sin left( frac{pi j}{2} ight) \ &=Largeoxed{displaystyle color{Blue}{mathbf{G}-frac{pi}{2}ln(2)}} end{align*}]

  • 相关阅读:
    informix 外部表 pipe
    关于XML的一些解析操作
    oracle 导出导入数据库
    判断请求访问的浏览器类型设备
    git与SVN的区别
    Java获取文件路径
    <DIV>内容显示隐藏功能实现
    文件下载
    文件上传
    记录启动Nginx启动失败
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5458788.html
Copyright © 2011-2022 走看看