zoukankan      html  css  js  c++  java
  • Euler Sums系列(四)

    [Largedisplaystyle sum_{n=1}^infty (-1)^n frac{H_n}{2n+1}=mathbf{G}-frac{pi}{2}ln(2) ]


    (Largemathbf{Proof:})
    (Largemathbf{Method~One:})
    Using the relation (displaystyle H_{n} = int_{0}^{1} frac{1-x^n}{1-x} mathrm{d}x), we find that the series reduces to

    [egin{align*} sum_{n=1}^infty (-1)^n frac{H_n}{2n+1} &= int_{0}^{1} frac{2}{1-x^2} left( frac{pi x}{4} - arctan x ight) mathrm dx \ &= int_{0}^{1} frac{2}{1-x^2} left( arctan left( frac{1-x}{1+x} ight) - frac{pi (1-x)}{4} ight) mathrm dx \ &= int_{0}^{1} frac{2}{1-x^2} arctan left( frac{1-x}{1+x} ight) mathrm dx - int_{0}^{1} frac{pi}{2(1+x)} mathrm dx end{align*} ]

    For the former one, we use the substitution (displaystyle t = frac{1-x}{1+x}) to obtain that

    [int_{0}^{1} frac{2}{1-x^2} arctan left( frac{1-x}{1+x} ight) mathrm dx = int_{0}^{1} frac{arctan t}{t} mathrm dt = mathbf{G} ]

    The latter one reduces to (displaystyle -frac{pi}{2} ln 2), so the conclusion follows.

    [Largeoxed{displaystyle sum_{n=1}^infty (-1)^n frac{H_n}{2n+1}=color{Blue}{mathbf{G}-frac{pi}{2}ln(2)}} ]


    (Largemathbf{Method~Two:})

    [sum_{n=1}^infty (-1)^n H_n t^n = frac{-ln(1+t)}{1+t} ]

    Let (t=x^2)

    [sum_{n=1}^infty (-1)^n H_n x^{2n} = frac{-ln(1+x^2)}{1+x^2} ]

    Integrating with respect to (x) and interchanging integral and summation we get

    [egin{align*} &sum_{n=1}^infty (-1)^n H_n int_0^1 x^{2n}mathrm dx = - int_0^1 frac{ln(1+x^2)}{1+x^2}mathrm dx\ &sum_{n=1}^infty (-1)^n frac{H_n}{2n+1}=-int_0^1 frac{ln(1+x^2)}{1+x^2}mathrm dx end{align*}]

    In the integral, substitute (displaystyle x= an( heta)):

    [sum_{n=1}^infty (-1)^n frac{H_n}{2n+1} = 2int_0^{frac{pi}{4}}ln(cos heta) mathrm d heta ]

    The remaining integral is evaluated using a fourier series:

    [egin{align*} sum_{n=1}^infty (-1)^n frac{H_n}{2n+1} &= 2 int_0^{frac{pi}{4}}left( -ln(2)-sum_{j=1}^infty frac{(-1)^j cos(2j heta)}{j} ight)mathrm d heta \ &=-frac{pi}{2}ln(2) -2sum_{j=1}^infty frac{(-1)^j}{j}int_0^{frac{pi}{4}}cos(2j heta) mathrm d heta \&= -frac{pi}{2}ln(2)+sum_{j=1}^infty frac{(-1)^{j+1}}{j^2}sin left( frac{pi j}{2} ight) \ &=Largeoxed{displaystyle color{Blue}{mathbf{G}-frac{pi}{2}ln(2)}} end{align*}]

  • 相关阅读:
    poj3669 广搜
    检索所有课程都选修的的学生的学号与姓名
    UVA10160 Servicing Stations
    uva11205 The broken pedometer 子集生成
    poj1101 the game 广搜
    poj3009 Curling 2.0 深搜
    poj 1564 Sum It Up 搜索
    HDU 2268 How To Use The Car (数学题)
    codeforces 467C George and Job(简单dp,看了题解抄一遍)
    HDU 2267 How Many People Can Survive(广搜,简单)
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5458788.html
Copyright © 2011-2022 走看看