zoukankan      html  css  js  c++  java
  • Euler Sums系列(四)

    [Largedisplaystyle sum_{n=1}^infty (-1)^n frac{H_n}{2n+1}=mathbf{G}-frac{pi}{2}ln(2) ]


    (Largemathbf{Proof:})
    (Largemathbf{Method~One:})
    Using the relation (displaystyle H_{n} = int_{0}^{1} frac{1-x^n}{1-x} mathrm{d}x), we find that the series reduces to

    [egin{align*} sum_{n=1}^infty (-1)^n frac{H_n}{2n+1} &= int_{0}^{1} frac{2}{1-x^2} left( frac{pi x}{4} - arctan x ight) mathrm dx \ &= int_{0}^{1} frac{2}{1-x^2} left( arctan left( frac{1-x}{1+x} ight) - frac{pi (1-x)}{4} ight) mathrm dx \ &= int_{0}^{1} frac{2}{1-x^2} arctan left( frac{1-x}{1+x} ight) mathrm dx - int_{0}^{1} frac{pi}{2(1+x)} mathrm dx end{align*} ]

    For the former one, we use the substitution (displaystyle t = frac{1-x}{1+x}) to obtain that

    [int_{0}^{1} frac{2}{1-x^2} arctan left( frac{1-x}{1+x} ight) mathrm dx = int_{0}^{1} frac{arctan t}{t} mathrm dt = mathbf{G} ]

    The latter one reduces to (displaystyle -frac{pi}{2} ln 2), so the conclusion follows.

    [Largeoxed{displaystyle sum_{n=1}^infty (-1)^n frac{H_n}{2n+1}=color{Blue}{mathbf{G}-frac{pi}{2}ln(2)}} ]


    (Largemathbf{Method~Two:})

    [sum_{n=1}^infty (-1)^n H_n t^n = frac{-ln(1+t)}{1+t} ]

    Let (t=x^2)

    [sum_{n=1}^infty (-1)^n H_n x^{2n} = frac{-ln(1+x^2)}{1+x^2} ]

    Integrating with respect to (x) and interchanging integral and summation we get

    [egin{align*} &sum_{n=1}^infty (-1)^n H_n int_0^1 x^{2n}mathrm dx = - int_0^1 frac{ln(1+x^2)}{1+x^2}mathrm dx\ &sum_{n=1}^infty (-1)^n frac{H_n}{2n+1}=-int_0^1 frac{ln(1+x^2)}{1+x^2}mathrm dx end{align*}]

    In the integral, substitute (displaystyle x= an( heta)):

    [sum_{n=1}^infty (-1)^n frac{H_n}{2n+1} = 2int_0^{frac{pi}{4}}ln(cos heta) mathrm d heta ]

    The remaining integral is evaluated using a fourier series:

    [egin{align*} sum_{n=1}^infty (-1)^n frac{H_n}{2n+1} &= 2 int_0^{frac{pi}{4}}left( -ln(2)-sum_{j=1}^infty frac{(-1)^j cos(2j heta)}{j} ight)mathrm d heta \ &=-frac{pi}{2}ln(2) -2sum_{j=1}^infty frac{(-1)^j}{j}int_0^{frac{pi}{4}}cos(2j heta) mathrm d heta \&= -frac{pi}{2}ln(2)+sum_{j=1}^infty frac{(-1)^{j+1}}{j^2}sin left( frac{pi j}{2} ight) \ &=Largeoxed{displaystyle color{Blue}{mathbf{G}-frac{pi}{2}ln(2)}} end{align*}]

  • 相关阅读:
    HDU2027 统计元音 一点点哈希思想
    湖南工业大学第一届ACM竞赛 数字游戏 字符串处理
    湖南工业大学第一届ACM竞赛 我素故我在 DFS
    HDU3293sort
    HDU2082 找单词 母函数
    HDU1018 Big Number 斯特林公式
    湖南工业大学第一届ACM竞赛 分糖果 位操作
    UVA 357 Let Me Count The Ways
    UVA 147 Dollars
    UVA 348 Optimal Array Multiplication Sequence
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5458788.html
Copyright © 2011-2022 走看看