算法与数据结构---6.5、斐波那契数列-递归解法
一、总结
一句话总结:
递推法的递推表达式就是递归的各个元素之间的关系,所以递推表达式明确之后,递归的代码也就特别好写了
#include <iostream> using namespace std; const int mod=1000000007; int find(int n){ if(n==1||n==2) return 1; else{ return (find(n-1)+find(n-2))%mod; } } int main(){ int n; cin>>n; cout<<find(n)<<endl; return 0; }
二、斐波那契数列
博客对应课程的视频位置:6.5、斐波那契数列-递归解法
https://www.fanrenyi.com/video/27/277
1、题目描述
问题描述:
满足F1=F2=1,F(n)=F(n-1)+F(n-2)的数列称为斐波那契数列(Fibonacci),
它的前若干项是1,1,2,3,5,8,13,21,34,55...,求此数列第n项 mod 10^9+7的值(n>=3)。
输入格式:
一行一个正整数n
输出格式:
一行一个整数表示答案。
输入输出样例:
输入5,输出5
输入10,输出55
【数据范围】
对于60%的数据,1<=n<=92;
对于100%的数据,1<=n<2^63。
题目位置:
P1962 斐波那契数列 - 洛谷 | 计算机科学教育新生态
https://www.luogu.com.cn/problem/P1962
2、递推解法
1 /*
2
3 递推关系式:
4 题目中已经非常明显的给出了,就是
5 F(n)=F(n-1)+F(n-2)
6
7 解决递推问题的一般步骤
8 1、建立递推关系式:F(n)=F(n-1)+F(n-2)
9 2、确定边界条件:
10 f(1)=f(2)=1,
11 所以我们的循环可以从3开始,到n结束,
12 也就是3-n
13
14 算法步骤:
15 1、确定初始值
16 2、循环做递推,3-n
17
18 */
19 #include <iostream>
20 using namespace std;
21 const int mod=1000000007;
22 int f[200000];
23 int main(){
24 int n;
25 cin>>n;
26 //1、确定初始值
27 f[1]=f[2]=1;
28 //2、循环做递推,3-n
29 for(int i=3;i<=n;i++){
30 //F(n)=F(n-1)+F(n-2)
31 f[i]=(f[i-1]+f[i-2])%mod;
32 }
33 cout<<f[n]<<endl;
34 return 0;
35 }
3、滚动数组优化
1 /*
2
3 之前的最大子段和的动态规划的优化的时候,
4 我们讲了滚动数组优化,
5 原因是 对应的状态转移方程为:
6 f[i]=max(f[i-1]+a[i],a[i]) (2<=i<=n)
7 里面只用到了f[i]和f[i-1]这两个元素,
8 所以可以用只有两个元素的数组来优化
9
10 我们现在的递推表达式是:
11 f[i]=f[i-1]+f[i-2] (3<=i<=n)
12 里面用到了f[i]、f[i-1]和f[i-2]三个元素,
13 所以可以用含有三个元素的数组来优化
14
15 滚动数组的代码修改也很简单
16 直接在递推表达式有i的位置%3即可
17 f[i%3]=f[(i-1)%3]+f[(i-2)%3];
18 (%3是因为现在是有三个元素的滚动数组)
19
20 注意:
21 取结果的时候,n也需要模3,例如f[n%3]
22
23 */
24
25 #include <iostream>
26 using namespace std;
27 const int mod=1000000007;
28 int f[3];
29 int main(){
30 int n;
31 cin>>n;
32 //1、确定初始值
33 f[1]=f[2]=1;
34 //2、循环做递推,3-n
35 for(int i=3;i<=n;i++){
36 //F(n)=F(n-1)+F(n-2)
37 f[i%3]=(f[(i-1)%3]+f[(i-2)%3])%mod;
38 }
39 //注意n也需要模3
40 cout<<f[n%3]<<endl;
41 return 0;
42 }
4、递推和动态规划的关系
/*
上述代码也就是这个题目动态规划的写法
动态规划里面有状态,状态转移方程
递推里面初始值,递推表达式
其实动态规划里面的状态转移方程,就是递推表达式
动态规划里面的初始状态,就是递推里面的初始值
所以动态规划可以看做是一种特殊的递推,
动态规划可以看做保存中间状态(中间结果)的递推
对于这题:
状态可以设置为:f[i]为 斐波那契数列第n项 mod 10^9+7的值
那么状态转移方程就是递推表达式:F(n)=F(n-1)+F(n-2)
初始状态:f[1]=f[2]=1
*/
5、三个变量解法
1 /*
2 f[3] 可以直接用3个变量a、b、c来代替
3 这个时候就不能通过取模来自动变换位置了
4
5
6 */
7 #include <iostream>
8 using namespace std;
9 const int mod=1000000007;
10 int main(){
11 int n;
12 int a,b,c;
13 cin>>n;
14 //1、确定初始值
15 //这里对a也赋值为1,是为了保证n=1和n=2的时候也有正确结果输出
16 c=a=b=1;
17 //2、循环做递推,3-n
18 for(int i=3;i<=n;i++){
19 //F(n)=F(n-1)+F(n-2)
20 c=(b+a)%mod;
21 //保留f(n)和f(n-1)做下一轮的f(n-1)和f(n-2)
22 a=b;
23 b=c;
24 }
25 cout<<c<<endl;
26 return 0;
27 }
6、递归写法
1 /* 2 3 本题递推法的递推的关系式非常明确,就是f[i]=f[i-1]+f[i-2] 4 递推法的递推关系式,对应到递归,就是递归的各个元素之间的关系 5 明确这个,递归的代码就特别好敲 6 7 递归注意点 8 递归的终止条件:n=2和n=1 9 递归的递推表达式:f[i]=f[i-1]+f[i-2] (3<=i<=n) 10 递归的返回值:所求值(斐波那契数列第n项 mod 10^9+7的值) 11 12 */ 13 #include <iostream> 14 using namespace std; 15 const int mod=1000000007; 16 17 int find(int n){ 18 if(n==1||n==2) return 1; 19 else{ 20 return (find(n-1)+find(n-2))%mod; 21 } 22 } 23 24 int main(){ 25 int n; 26 cin>>n; 27 cout<<find(n)<<endl; 28 return 0; 29 }