zoukankan      html  css  js  c++  java
  • TensorFlow2_200729系列---25、ResNet实例

    TensorFlow2_200729系列---25、ResNet实例

    一、总结

    一句话总结:

    按照结构构建ResNet网络即可,挺简单的

    1、显卡Out of memory解决方案?

    I、decrease batch size
    II、tune resnet [2, 2, 2, 2]
    III、try Google CoLab

    二、ResNet实例

    博客对应课程的视频位置:

    import  tensorflow as tf
    from    tensorflow import keras
    from    tensorflow.keras import layers, Sequential
    
    
    
    class BasicBlock(layers.Layer):
    
        def __init__(self, filter_num, stride=1):
            super(BasicBlock, self).__init__()
    
            self.conv1 = layers.Conv2D(filter_num, (3, 3), strides=stride, padding='same')
            self.bn1 = layers.BatchNormalization()
            self.relu = layers.Activation('relu')
    
            self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same')
            self.bn2 = layers.BatchNormalization()
    
            if stride != 1:
                self.downsample = Sequential()
                self.downsample.add(layers.Conv2D(filter_num, (1, 1), strides=stride))
            else:
                self.downsample = lambda x:x
    
    
    
        def call(self, inputs, training=None):
    
            # [b, h, w, c]
            out = self.conv1(inputs)
            out = self.bn1(out,training=training)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out,training=training)
    
            identity = self.downsample(inputs)
    
            output = layers.add([out, identity])
            output = tf.nn.relu(output)
    
            return output
    
    
    class ResNet(keras.Model):
    
    
        def __init__(self, layer_dims, num_classes=100): # [2, 2, 2, 2]
            super(ResNet, self).__init__()
    
            self.stem = Sequential([layers.Conv2D(64, (3, 3), strides=(1, 1)),
                                    layers.BatchNormalization(),
                                    layers.Activation('relu'),
                                    layers.MaxPool2D(pool_size=(2, 2), strides=(1, 1), padding='same')
                                    ])
    
            self.layer1 = self.build_resblock(64,  layer_dims[0])
            self.layer2 = self.build_resblock(128, layer_dims[1], stride=2)
            self.layer3 = self.build_resblock(256, layer_dims[2], stride=2)
            self.layer4 = self.build_resblock(512, layer_dims[3], stride=2)
    
            # output: [b, 512, h, w],
            self.avgpool = layers.GlobalAveragePooling2D()
            self.fc = layers.Dense(num_classes)
    
    
    
    
    
        def call(self, inputs, training=None):
    
            x = self.stem(inputs,training=training)
    
            x = self.layer1(x,training=training)
            x = self.layer2(x,training=training)
            x = self.layer3(x,training=training)
            x = self.layer4(x,training=training)
    
            # [b, c]
            x = self.avgpool(x)
            # [b, 100]
            x = self.fc(x)
    
            return x
    
    
    
        def build_resblock(self, filter_num, blocks, stride=1):
    
            res_blocks = Sequential()
            # may down sample
            res_blocks.add(BasicBlock(filter_num, stride))
    
            for _ in range(1, blocks):
                res_blocks.add(BasicBlock(filter_num, stride=1))
    
            return res_blocks
    
    
    def resnet18():
        return ResNet([2, 2, 2, 2])
    
    
    def resnet34():
        return ResNet([3, 4, 6, 3])

    测试

    import  os
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    
    import  tensorflow as tf
    from    tensorflow.keras import layers, optimizers, datasets, Sequential 
    from    resnet import resnet18 
    
    tf.random.set_seed(2345)
    
    
    
    
    
    def preprocess(x, y):
        # [-1~1]
        x = tf.cast(x, dtype=tf.float32) / 255. - 0.5
        y = tf.cast(y, dtype=tf.int32)
        return x,y
    
    
    (x,y), (x_test, y_test) = datasets.cifar100.load_data()
    y = tf.squeeze(y, axis=1)
    y_test = tf.squeeze(y_test, axis=1)
    print(x.shape, y.shape, x_test.shape, y_test.shape)
    
    
    train_db = tf.data.Dataset.from_tensor_slices((x,y))
    train_db = train_db.shuffle(1000).map(preprocess).batch(512)
    
    test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
    test_db = test_db.map(preprocess).batch(512)
    
    sample = next(iter(train_db))
    print('sample:', sample[0].shape, sample[1].shape,
          tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
    
    
    def main():
    
        # [b, 32, 32, 3] => [b, 1, 1, 512]
        model = resnet18()
        model.build(input_shape=(None, 32, 32, 3))
        model.summary()
        optimizer = optimizers.Adam(lr=1e-3)
    
        for epoch in range(500):
    
            for step, (x,y) in enumerate(train_db):
    
                with tf.GradientTape() as tape:
                    # [b, 32, 32, 3] => [b, 100]
                    logits = model(x,training=True)
                    # [b] => [b, 100]
                    y_onehot = tf.one_hot(y, depth=100)
                    # compute loss
                    loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
                    loss = tf.reduce_mean(loss)
    
                grads = tape.gradient(loss, model.trainable_variables)
                optimizer.apply_gradients(zip(grads, model.trainable_variables))
    
                if step %50 == 0:
                    print(epoch, step, 'loss:', float(loss))
    
    
    
            total_num = 0
            total_correct = 0
            for x,y in test_db:
    
                logits = model(x,training=False)
                prob = tf.nn.softmax(logits, axis=1)
                pred = tf.argmax(prob, axis=1)
                pred = tf.cast(pred, dtype=tf.int32)
    
                correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
                correct = tf.reduce_sum(correct)
    
                total_num += x.shape[0]
                total_correct += int(correct)
    
            acc = total_correct / total_num
            print(epoch, 'acc:', acc)
    
    
    
    if __name__ == '__main__':
        main()
     
  • 相关阅读:
    快速排序模板
    C++面试题目汇总
    二叉树两个节点的最大路径
    vim中操作的快捷键
    剑指offer 顺时针打印矩阵
    剑指offer 判断一棵树是不是另一棵树的子结构
    poi导出excel表
    java 获取服务器(ftp)指定文件夹内的文件
    部署web应用
    tomcat 的目录结构及修改端口号
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/13466300.html
Copyright © 2011-2022 走看看