zoukankan      html  css  js  c++  java
  • 机器学习西瓜书笔记---3.2、线性回归

    机器学习西瓜书笔记---3.2、线性回归

    一、总结

    一句话总结:

    【系统】:系统的学习非常非常重要,所以【看书】是非常非常必要且高效的

    1、一元线性回归?

    我们先考虑一种最简单的情形:输入【属性的数目只有一个】.为便于讨论,此时我们忽略关于属性的下标,即$$D = { ( x _ { i } , y _ { i } ) } _ { i = 1 } ^ { m }$$

    2、离散属性如何转化为连续值?

    对离散属性,若属性值间【存在“序”(order)关系】,可通过连续化将其转化为连续值,例如二值属性“身高”的取值“高”“矮”可转化为{1.0,0.0},三值属性“高度”的取值【“高”“中”“低”可转化为{10,0.5,0.0}】;
    若属性值间【不存在序关系】,假定有k个属性值,则通常转化为k维向量,例如属性“瓜类”的取值【“西瓜”“南瓜”“黄瓜”可转化为(0,0,1),(0,1,0),(1,0,0)】
    若将无序属性连续化,则会【不恰当地引入序关系】,对后续处理如距离计算等造成误导

    3、均方误差公式?

    【均方误差】是【回归任务中最常用的性能度量】,因此我们可试图让均方误差最小化
    $$( w ^ { * } , b ^ { * } ) = underset { ( w , b ) } { arg min } sum _ { i = 1 } ^ { m } ( f ( x _ { i } ) - y _ { i } ) ^ { 2 } = underset { ( w , b ) } { arg min } sum _ { i = 1 } ^ { m } ( y _ { i } - w x _ { i } - b ) ^ { 2 }$$
    均方误差有非常好的几何意义,它对应了常用的【欧几里得距离】或简称【“欧氏距离”(Euclidean distance)】.
    【基于均方误差最小化】来进行模型求解的方法称为【“最小二乘法”(least square method)】.在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧氏距离之和最小

    4、均方误差和最小二乘法的关系?

    【基于均方误差最小化】来进行模型求解的方法称为【“最小二乘法”(least square method)】.在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧氏距离之和最小

    5、最小二乘“参数估计”(parameter estimation)?

    求解和b使$$E _ { ( w , b ) } = sum _ { i = 1 } ^ { m } ( y _ { i } - w x _ { i } - b ) ^ { 2 }$$【最小化的过程】,称为线性回归模型的最小二乘“参数估计”(parameter estimation).我们可将_$E _ { ( w , b ) }_$分别对w和b求导,得到
    【对w求导】:这个公式的推导非常简单,最小二乘法求偏导一步一步即可:$$frac { partial E _ { ( w , b ) } } { partial w } = 2 ( w sum _ { i = 1 } ^ { m } x _ { i } ^ { 2 } - sum _ { i = 1 } ^ { m } ( y _ { i } - b ) x _ { i } )$$:导数为0求得最优解:$$w = frac { sum _ { i = 1 } ^ { m } y _ { i } ( x _ { i } - overline { x } ) } { sum _ { i = 1 } ^ { m } x _ { i } ^ { 2 } - frac { 1 } { m } ( sum _ { i = 1 } ^ { m } x _ { i } ) ^ { 2 } }$$
    【对b求导】:这个公式的推导非常简单,最小二乘法求偏导一步一步即可:$$frac { partial E _ { ( w , b ) } } { partial b } = 2 ( m b - sum _ { i = 1 } ^ { m } ( y _ { i } - w x _ { i } ) )$$:导数为0求得最优解:$$b = frac { 1 } { m } sum _ { i = 1 } ^ { m } ( y _ { i } - w x _ { i } )$$

    6、“多元线性回归”(multivariate linear regression)?

    更一般的情形是如本节开头的数据集D,样本由【d个属性】描述.此时我们试图学得$$f ( x _ { i } ) = w ^ { T } x _ { i } + b , ext { 使得 } f ( x _ { i } ) simeq y _ { i }$$,这称为“多元线性回归”(multivariate linear regression).

    7、“对数线性回归”(log-linear regression)由来?

    它实际上是在试图让_$e ^ { w ^ { T } x + b }_$逼近y
    我们把线性回归模型简写为:$$y = w ^ { T } x + b$$,可否令模型预测值【逼近y的衍生物】呢?譬如说,假设我们认为示例所对应的输出标记是在指数尺度上变化,那就可将输出标记的对数作为线性模型逼近的目标,即$$ln y = w ^ { T } x + b$$,这就是“对数线性回归”(log-linear regression)
    $$ln y = w ^ { T } x + b$$在【形式上仍是线性回归】,但实质上已是在求取输入空间到输出空间的【非线性函数映射】,如图3.1所示.这里的【对数函数】起到了将线性回归模型的预测值与真实标记联系起来的【作用】

    8、对数线性回归示意图?

    $$y _ { i } ^ { prime } = ln y _ { i }$$
    在【形式上仍是线性回归】,但实质上已是在求取输入空间到输出空间的【非线性函数映射】

    9、“广义线性模型”(generalized linear model)?

    更一般地,考虑单调可微函数g(~),令$$y = g ^ { - 1 } ( w ^ { T } x + b )$$,这样得到的模型称为“广义线性模型”(generalized linear model),其中函数g(~)称为“联系函数”(link function).
    显然,【对数线性回归是广义线性模型在g(~)=ln(~)时的特例】
    广义线性模型的参数估计常通过【加权最小二乘法】或【极大似然法】进行

    二、内容在总结中

    博客对应课程的视频位置:

     
    我的旨在学过的东西不再忘记(主要使用艾宾浩斯遗忘曲线算法及其它智能学习复习算法)的偏公益性质的完全免费的编程视频学习网站: fanrenyi.com;有各种前端、后端、算法、大数据、人工智能等课程。
    博主25岁,前端后端算法大数据人工智能都有兴趣。
    大家有啥都可以加博主联系方式(qq404006308,微信fan404006308)互相交流。工作、生活、心境,可以互相启迪。
    聊技术,交朋友,修心境,qq404006308,微信fan404006308
    26岁,真心找女朋友,非诚勿扰,微信fan404006308,qq404006308
    人工智能群:939687837

    作者相关推荐

  • 相关阅读:
    javaEE web 系统安装时自定义初始化
    windows 安装绿色版mysql
    myeclipse 安装svn(subeclipsesite)插件
    Xcode连接 Git
    生成16位不重复编码
    百度工程师也犯低级错误(有心还是无意)?
    IBatis 映射文件 sql 中大于、小于等符号转义
    web项目文档总览
    银行卡号的校验
    身份证的校验
  • 原文地址:https://www.cnblogs.com/Renyi-Fan/p/14052321.html
Copyright © 2011-2022 走看看