zoukankan      html  css  js  c++  java
  • BZOJ3992[SDOI2015]序列统计

    题目链接

    洛谷

    BZOJ

    解析

    头一回知道原根还可以这么考……

    不难想到递推的做法(dp[i][j])表示长度为(i),乘积为(j)的答案,那么(dp[i][j cdot a[i] mod M] += dp[i - 1][j])

    首先我们发现(0)可以直接丢掉,因为包含(0)的序列对答案不产生任何贡献,然后题目说(M)是个质数,如果设(G)(M)的原根,那么([1, M - 1])(G^1 mod M, G^2 mod M, ..., G^{M - 1} mod M)一一对应,那么可以用(G)头上的指数来代替([1, M - 1])中的一个数,设(dp[i][j])表示长度为(i),乘积为(G^j mod M)的答案,则(dp[i][(j + k)] += dp[i - 1][j])

    (f[j])表示(dp[i][j])(g[j])表示(dp[i - 1][j])(h[j])表示给定的集合中是否存在(G^j mod M)这个数,那么

    [f[j] = sum_{k = 1}^{M - 1} g[k] cdot h[j - k] ]

    这是一个卷积

    发现初始只有(f[0] = 1),所以只需对(h)快速幂卷积即可

    当然上面都是不考虑指数对(M - 1)取模的时候,考虑取模就每次卷积后把(f[i](i > M - 1))加到(f[i mod (M - 1)])的位置就可以了

    代码

    不知道为什么好像我的(FFT)(NTT)都自带大常数……耗时比第一页最慢的都多了一倍加(1s)……

    #include <cstring>
    #include <iostream>
    #include <cstdio>
    #include <vector>
    #define MAXN 8010
     
    typedef long long LL;
    const LL mod = 1004535809ll;
     
    int qpower(int, int, int);
    void pre_prime();
    void divide(int, std::vector<int> &);
    int get_g(int);
    void pre_rev(int);
    void NTT(int *, int, int);
    void mul(int *, int *, int);
     
    int N, M, X, SZ, n, g, pre[MAXN], f[MAXN << 2], ans[MAXN << 2], rev[MAXN << 2];
    std::vector<int> prime, dvd;
     
    inline void inc(int &x, int y) { x += y; if (x >= mod) x -= mod; }
    inline void dec(int &x, int y) { x -= y; if (x < 0) x += mod; }
    inline int add(int x, int y) { x += y; return x >= mod ? x - mod : x; }
    inline int sub(int x, int y) { x -= y; return x < 0 ? x + mod : x; }
     
    int main() {
        pre_prime();
        scanf("%d%d%d%d", &N, &M, &X, &SZ);
        g = get_g(M);
        for (int i = 1, j = g; i < M; ++i, j = (LL)j * g % M) pre[j] = i;
        for (int i = 0; i < SZ; ++i) {
            int t; scanf("%d", &t);
            if(t) ++f[pre[t]];
        }
        //debug
        //printf("%d
    ", g);
        //for (int i = 0; i < M; ++i) printf("%d ", pre[i]);
        //puts("");
        ans[0] = 1;
        while ((1 << n) < (M << 1)) ++n;
        pre_rev(n);
        while (N) {
            if (N & 1) mul(ans, f, n);
            mul(f, f, n);
            N >>= 1;
        }
        printf("%d
    ", ans[pre[X]]);
     
        return 0;
    }
    void pre_prime() {
        static bool isn_prime[MAXN];
        for (int i = 2; i < MAXN; ++i) {
            if (!isn_prime[i]) prime.push_back(i);
            for (int j = 0; j < prime.size(), i * prime[j] < MAXN; ++j) {
                isn_prime[i * prime[j]] = 0;
                if (i % prime[j] == 0) break;
            }
        }
    }
    int get_g(int x) {
        divide(x - 1, dvd);
        for (int i = 2; i < x; ++i)
            if (qpower(i, x - 1, x) == 1) {
                bool flag = 1;
                for (int j = 0; j < dvd.size(); ++j)
                    if (qpower(i, (x - 1) / dvd[j], x) == 1) { flag = 0; break; }
                if (flag) return i;
            }
    }
    void divide(int x, std::vector<int> &res) {
        for (int i = 0; i < prime.size(); ++i)
            if (x % prime[i] == 0) {
                res.push_back(prime[i]);
                while (x % prime[i] == 0) x /= prime[i];
            }
    }
    int qpower(int x, int y, int p) {
        int res = 1;
        while (y) {
            if (y & 1) res = (LL)res * x % p;
            x = (LL)x * x % p; y >>= 1;
        }
        return res;
    }
    void NTT(int *arr, int sz, int tp) {
        for (int i = 0; i < (1 << sz); ++i)
            if (rev[i] > i) std::swap(arr[i], arr[rev[i]]);
        for (int len = 2, half = 1; len <= (1 << sz); len <<= 1, half <<= 1) {
            int wn = qpower(3, (mod - 1) / len, mod);
            if (tp == -1) wn = qpower(wn, mod - 2, mod);
            for (int i = 0; i < (1 << sz); i += len)
                for (int j = 0, w = 1; j < half; ++j, w = (LL)w * wn % mod) {
                    int x = arr[i + j], y = (LL)arr[i + j + half] * w % mod;
                    inc(arr[i + j], y); dec(arr[i + j + half] = x, y);
                }
        }
        if (tp == -1) {
            int inv = qpower(1 << sz, mod - 2, mod);
            for (int i = 0; i < (1 << sz); ++i) arr[i] = (LL)arr[i] * inv % mod;
        }
    }
    void mul(int *a, int *b, int sz) {
        static int tmp[MAXN << 2];
        for (int i = 0; i < (1 << sz); ++i) tmp[i] = b[i];
        NTT(a, sz, 1); NTT(tmp, sz, 1);
        for (int i = 0; i < (1 << sz); ++i) a[i] = (LL)a[i] * tmp[i] % mod;
        NTT(a, sz, -1);
        for (int i = 1; i < M; ++i) inc(a[i], a[i + M - 1]), a[i + M - 1] = 0; 
    }
    void pre_rev(int sz) {
        for (int i = 0; i < (1 << sz); ++i)
            rev[i] = ((rev[i >> 1] >> 1) | ((i & 1) << sz - 1));
    }
    //Rhein_E
    
  • 相关阅读:
    TCP/IP 协议简介
    制作html的旋转太极图
    Redis高可用
    RFID固定资产管理系统解决方案
    为什么要用三维数据可视化?
    Java单元测试技巧之PowerMock
    技术干货 | 如何在 Library 中使用/依赖 mPaaS?
    云原生的进一步具象化
    【阿里云EMR实战篇】以EMR测试集群版本为例,详解 Flink SQL Client 集成 Hive 使用步骤
    【实践案例】Databricks 数据洞察 Delta Lake 在基智科技(STEPONE)的应用实践
  • 原文地址:https://www.cnblogs.com/Rhein-E/p/10528412.html
Copyright © 2011-2022 走看看