zoukankan      html  css  js  c++  java
  • bzoj4542[HNOI2016]大数(莫队)

    题目链接

    BZOJ

    洛谷

    解析

    莫队

    (num_i)表示(s[1…n])所表示的数

    那么(s[l…r])表示的数为(frac{num_l - num_{r + 1}}{10^{n - r}})

    所以题目即求满足(frac{num_l - num_{r + 1}}{10^{n - r}} equiv 0 (mod p))((l, r))对数

    1. (p eq 2, p e 5)时,(p)(10)互质,上式可化为(num_l equiv num_{r + 1} (mod p)),问题变成了统计区间相同数个数,上莫队就行了(当然要离散化余数)
    2. (p = 2)(p = 5)时,末位数字有规律,可以继续莫队,或者前缀和搞一搞

    一个注意的地方:离散化的时候把(n+1)位置一起离散……

    代码

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #define MAXN 100010
    
    typedef long long LL;
    struct Query {
    	int l, r, id, blk;
    	bool operator <(const Query &q) const;
    };
    
    void prework();
    void work1();
    void work2();
    void work3();
    
    int N, M, P, perblock, num[MAXN], vec[MAXN];
    LL pow10[MAXN], f[MAXN], g[MAXN];
    char s[MAXN];
    Query qry[MAXN];
    
    int main() {
    	scanf("%d%s%d", &P, s + 1, &M);
    	N = strlen(s + 1);
    	if (P == 2) work1();
    	else if (P == 5) work2();
    	else work3();
    
    	return 0;
    }
    bool Query::operator <(const Query &q) const { return blk == q.blk ? r < q.r : blk < q.blk; }
    void work1() {
    	for (int i = 1; i <= N; ++i) {
    		f[i] = f[i - 1], g[i] = g[i - 1];
    		if (((s[i] - '0') & 1) ^ 1) f[i] = f[i] + i, ++g[i];
    	}
    	while (M--) {
    		int l, r; scanf("%d%d", &l, &r);
    		printf("%lld
    ", f[r] - f[l - 1] - (l - 1) * (g[r] - g[l - 1]));
    	}
    }
    void work2() {
    	for (int i = 1; i <= N; ++i) {
    		f[i] = f[i - 1], g[i] = g[i - 1];
    		if (s[i] == '0' || s[i] == '5') f[i] = f[i] + i, ++g[i];
    	}
    	while (M--) {
    		int l, r; scanf("%d%d", &l, &r);
    		printf("%lld
    ", f[r] - f[l - 1] - (l - 1) * (g[r] - g[l - 1]));
    	}	
    }
    void prework() {
    	while (perblock * perblock <= N) ++perblock;
    	pow10[0] = 1;
    	for (int i = 1; i <= N; ++i) pow10[i] = pow10[i - 1] * 10 % P;
    	for (int i = N; i; --i) num[i] = ((LL)num[i + 1] + (s[i] - '0') * pow10[N - i] % P) % P;
    	for (int i = 1; i <= N; ++i) vec[i - 1] = num[i];
    	std::sort(vec, vec + N + 1);//注意要把N+1位置的0一起离散化
    	int tot = std::unique(vec, vec + N + 1) - vec;
    	for (int i = 1; i <= N + 1; ++i)
    		num[i] = std::lower_bound(vec, vec + tot, num[i]) - vec;
    	for (int i = 0; i < M; ++i) {
    		scanf("%d%d", &qry[i].l, &qry[i].r);
    		qry[i].id = i;
    		++qry[i].r;
    		qry[i].blk = (qry[i].l - 1) / perblock;
    	}
    	std::sort(qry, qry + M);
    }
    void work3() {
    	prework();
    	LL cur = 0;
    	for (int i = 0, l = 1, r = 0; i < M; ++i) {
    		while (r < qry[i].r) ++r, cur += g[num[r]], ++g[num[r]];
    		while (l > qry[i].l) --l, cur += g[num[l]], ++g[num[l]];
    		while (r > qry[i].r) --g[num[r]], cur -= g[num[r]], --r;
    		while (l < qry[i].l) --g[num[l]], cur -= g[num[l]], ++l;
    		f[qry[i].id] = cur;
    	}
    	for (int i = 0; i < M; ++i) printf("%lld
    ", f[i]);
    }
    //Rhein_E
    
  • 相关阅读:
    Linux find 用法示例
    [转载]进程的概念与结构
    linux vi命令详解
    vi快捷键必知必会
    vim分屏操作
    硬连接和软连接的区别
    javascript_console调试常用方法
    javascript_错误处理机制
    Array详解
    react--setState使用
  • 原文地址:https://www.cnblogs.com/Rhein-E/p/10573626.html
Copyright © 2011-2022 走看看