zoukankan      html  css  js  c++  java
  • POJ

    链接:https://ac.nowcoder.com/acm/contest/1015/B

    题目描述

    7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。

    蛋糕

    设从下往上数第i(1 ≤ i ≤ M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i<M时,要求Ri>Ri+1且Hi>Hi+1。

    由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。

    令Q= Sπ

    请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。

    (除Q外,以上所有数据皆为正整数)

    输入描述:

    有两行,第一行为N(N≤10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M≤20),表示蛋糕的层数为M。
    

    输出描述:

    仅一行,是一个正整数S(若无解则S=0)。
    

    示例1

    输入

    100
    2
    

    输出

    68
    

    备注:

    附:圆柱公式体积V=πR2H侧面积A’=2πRH底面积A=πR2
    

    有点惭愧的是,我并没有自己把它写出来,实在是头疼,以后有需要的时候还会自己写一下。

    这里贴下dalao的代码作为学习

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    int N, M;
    const int inf = 0x3f3f3f3f;
    int minv[25], mins[25];
    int ans;
    void dfs(int r, int h, int layer, int v, int s) {
    	if(layer == 0) {
    		if(v == N && ans > s) ans = s;
    		return;
    	}
    	if(N - v < minv[layer]) return;//剪枝1:总体积减去蛋糕当前层以下的层的总体积
    					//小于上面的层所能构成的最小体积 
    	if(ans - s < mins[layer]) return;//剪枝2:当前得到的最优解减去蛋糕当前层以下的层的总面积
    					//小于上面的层所能构成的最小面积 
    	if(s + 2 * (N - v) / r > ans) return;//剪枝3:2 * (N - v) / r 表示剩下的体积能组成最小面积
    						//的极限情况,可以证明,同样的体积组成一个大圆柱体和组成
    						//多个比一个大圆柱体小的小圆柱体相比,前者的表面积比后者
    						//要小,所以这种表面积最小的情况再加上本层以下的确定的表
    						//面积s如果是大于已知最优解s,那么最终结果一定不会比ans小
    						//返回 。(难理解) 
    	int i, j;
    	for(i = r; i >= layer; i--) {
    		if(layer == M) s = i * i; //第一次要加上底面的面积 
    		int maxh = min(h, (N - v - minv[layer - 1]) / i / i); //后者为本层高度最高的情况,
    									//但再高也不能高过最高高度h 
    		for(j = maxh; j >= layer; j--) {
    			dfs(i - 1, j - 1, layer - 1, v + i * i * j, s + 2 * i * j);
    		}
    	}
    }
    int main() {
    	int i;
    	minv[0] = mins[0] = 0;
    	for(i = 1; i <= 20; i++) {
    		minv[i] = minv[i - 1] + i * i * i;
    		mins[i] = mins[i - 1] + 2 * i * i;
    	}
    	while(~scanf("%d %d", &N, &M)) {
    		ans = inf;
    		dfs((int)sqrt(N), N, M, 0, 0);   //第一和第二个参数分别指最大的半径和最大的高度  
    		if(ans == inf) printf("0
    ");
    		else printf("%d
    ", ans);
    	}
        return 0;
    }
    

    关于剪枝的一个小总结:

    剪枝分为可行性剪枝最优化剪枝

    可行性剪枝一般的思考过程就是,我一共需要多少,在最多的情况下也无法达到,或最少的情况下也会超过。

    那么至于最大与最小到底怎么取到,就本题而言,还有类似的每层递增的题目,可以考虑我从(1,1)开始每层加一,到现在的层数,面积和即为最小面积。而最大,就是把一个变量限制成最小,就可以取得另一个的最大,而对每一个“另一个”,都有一个“这个”的最大与之对应。

    最优化剪枝,就是考虑,我现有的面积和已经比最小面积大了,那么不用继续讨论。或者,我现有的面积,加上最小面积,也比最小面积大,那么也可以不再继续。

  • 相关阅读:
    webpack操作整理——主要是配置文件的配置
    排序算法_10种经典排序整合
    Spring MVC & Mybatis 模拟总结
    Vue_组件通信完整整理
    Mybaits封装
    Spring交互层框架
    Vue 组件反刍
    Vue整体反刍
    Spring容器框架
    基于ptcms的小说站搭建,及网站无法install ,404或后台验证码 404情况的解决
  • 原文地址:https://www.cnblogs.com/RioTian/p/13470967.html
Copyright © 2011-2022 走看看