zoukankan      html  css  js  c++  java
  • 第十二届蓝桥杯C++B组 A~H题题解

    本次题解格式参考 墨羽魂韶

    本文所用的试题:
    第十二届蓝桥杯大赛软件赛省赛_CB.pdf

    最后编辑时间
    2021年4月29日 21:27:46

    填空题答案速览

    统一声明
    如果不写默认带有常用头文件
    如果不表明主函数默认表示在 void solve(){}
    默认使用

    using namespace std;

    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);

    using ll = long long;

    填空题答案速览

    1. 67108864
    2. 3181
    3. 40257
    4. 2430
    5. 10266837

    A. 空间

    问题简述

    256MB可以存放多少32位二进制整数?

    1 Mb = 1024 Kb = 1024 * 1024 b

    int = 4B (一个 int 占4比特)

    注意用 long long

    cout << 1ll * 256 * 1024 * 1024 * 8 / 32 << "
    ";
    

    B. 卡片

    问题简述
    用标有0~9且各有2021张的卡片可以拼到哪个数字

    问题分析
    直接按位统计, 不足退出即可, 特别注意, 退出循环的那个应该是正好无法达到的, 应该比那个少一

    void solve() {
        for (int i = 0; i < 10; ++i) a[i] = 2021;
        int i = 1;
        while (true) {
            int tmp = i;
            while (tmp) {
                --a[tmp % 10], tmp /= 10;
            }
            bool f = true;
            for (int i = 0; f && i < 10; ++i)
                if (a[i] < 0) f = false;
            if (!f) break;
            i++;
        }
        cout << --i << '
    ';
    }
    

    C. 直线

    问题简述
    给定平面上的 20*21 个整点, 问有不同的多少直线?

    问题分析

    结论而言就是比较K,B值,可以直接模拟,代码如下

    const int N = 2e5 + 10;
    struct Line {
        double k, b;
        bool operator<(const Line &t) const {
            if (k != t.k) return k < t.k;
            return b < t.b;
        }
    } l[N];
    
    void solve() {
        int cnt = 0;
        for (int x1 = 0; x1 < 20; ++x1)
            for (int y1 = 0; y1 < 21; ++y1)
                for (int x2 = 0; x2 < 20; ++x2)
                    for (int y2 = 0; y2 < 21; ++y2) {
                        if (x1 != x2) {
                            double k = (double)(y2 - y1) / (x2 - x1);
                            double b = y1 - k * x1;
                            l[cnt++] = {k, b};
                        }
                    }
        sort(l, l + cnt);
        int ans = 1;
        for (int i = 1; i < cnt; ++i)
            if (fabs(l[i].k - l[i - 1].k) > 1e-8 || fabs(l[i].b - l[i - 1].b) > 1e-8)
                ans++;
        cout << ans + 20 << '
    '; // 加上20条竖线
    }
    

    D. 货物摆放

    问题简述

    将 2021041820210418 可以分解为多少种 (A * B * C)的形式

    问题分析

    找到所有的因子,然后对因子进行暴力枚举

    const ll N = 2021041820210418, mod = 1e3 + 7;
    int P[mod], idx = 0;
    void solve() {
        for (int i = 1; N / i >= i; ++i)
            if (N % i == 0) P[idx++] = i;
        ll cnt = 0;
        for (int i = 0; i < idx; ++i)
            for (int j = 0; j < idx; ++j)
                for (int k = 0; k < idx; ++k) {
                    if (1ll * P[i] * P[j] * P[k] == N) ++cnt;
                    if (N / P[i] != P[i] && P[i] == P[j] * P[k]) ++cnt;
                    if (N / P[j] != P[j] && P[j] == P[i] * P[k]) ++cnt;
                    if (N / P[k] != P[k] && P[k] == P[j] * P[i]) ++cnt;
                }
        cout << cnt << "
    ";
    }
    

    E. 路径

    问题简述
    一个无向图, 2021个点, 标号为(1 ~ 2021), 如果两个点的差的绝对值<= 21, 则两点相通, 边长为两点的最大公倍数, 求起点1到2021的最小距离

    问题分析
    按题目建图, 跑一下SPFA(dijstra 等均可

    void solve() {
        int n = 2021;
        for (int i = 0; i < 2022; ++i)
            for (int j = max(i - 21, 0), k = min(i + 21, 2021); j <= k; ++j)
                add(i, j, 1ll * i * j / gcd(i, j));
        cout << spfa() << '
    ';// 赛后听说有人暴力跑 Floyd 也能出答案,但不建议
    }
    

    F. 时间显示

    问题简述
    给出一个整数, 表示1970年1月1日00:00开始经过的毫秒数, 输出对应的时分秒

    问题分析
    获取到对应的时间, 然后直接使用 printf输出即可

    void solve() {
        ll time;
        cin >> time;
        int h = time / (1000 * 60 * 60) % 24;
        int m = time / (1000 * 60) % 60;
        int s = time / 1000 % 60;
        printf("%02d:%02d:%02d", h, m, s);
    }
    

    G. 砝码称重
    问题简述

    给出N个砝码, 重量分别为 (W_1,W_2,W_3,W_4,...,W_n), 请问一共可以称出多少不同的重量

    问题分析
    假设有一个长度为1e6的数组, 表示可以称出的重量, 那么每多一个砝码(重量为k), 那么对于任何一个已经可以称出的重量( (i) ), 可以组合得到 (i-k, k-i, i+k) 这三种重量

    我们只需要维护这个数组即可

    const int N = 1e6 + 7;
    int W[N]    = {1};
    void solve() {
        int n, t;
        cin >> n;
        while (n--) {
            cin >> t;
            for (int i = 0; i < N; ++i) {
                // 为了节省空间, 用-1表示在大于i的, 1表示小于等于i的, 0表示无法称出的
                if (W[i] == 1) {
                    // i-t的情况
                    if (i > t) W[i - t] = 1;
                    // t-i的情况
                    if (t > i + i && W[t - i] != 1) W[t - i] = -1;
                    if (t - i > 0 && W[t - i] != -1) W[t - i] = 1;
                    // i+t的情况
                    if (i + t < N && W[i + t] != 1) W[i + t] = -1;
                }
                if (W[i] == -1) W[i] = 1;
            }
        }
        int cnt = 0;
        for (int i = 1; i < N; ++i) cnt += W[i];
        cout << cnt << '
    ';
    }
    

    H. 杨辉三角形

    问题简述
    给定一个数, 求出是在杨辉三角形的第几个数出现的

    问题分析

    比赛的时候没什么好的解法,随便找了下规律。用暴力能骗一些分

    见注释

    // Murabito-B 21/05/01
    #include <bits/stdc++.h>
    using namespace std;
    using LL = long long;
    int n;
    /*
        组合数和杨辉三角:第i行第j列的数都是组合数C(i, j) (i,j从0开始)
            C(n, 1) = n --> 对应从左向右看斜着的第二列! ---> 一定有解
        由于杨辉三角左右对称(C(a, b) == C(a, a-b)),又由于找第一次出现,因此一定在左边,右边可以直接删掉!
    
                1  ---> C(0, 0)
              1 
            1   2  ---> C(2, 1)
          1   3                             ---> C(2n, n)
        1   4   6  ---> C(4, 2)
      1   5   10
    1   6   15  20 ---> C(6, 3)
    
        n最大1e9,C(34, 17) > 1e9, C(32, 16) < 1e9,因此只要枚举前16个斜行即可!
    
    
        性质:
            1. 每一斜行从上到下递增
            2. 每一横行从中间到两边依次递减
    
        因此我们直接从中间对称轴倒序二分找起即可!
    
            C(r, k)对应的顺序值为:(r + 1) * r / 2 + k + 1
    
            二分的左右端点:l:2k,r:max(n, l)
                右端点一定不能比左端点小!
                特例:否则当n=1时,会出问题!
    
    */
    // C(a, b) = a!/b!(a-b)! = a * (a-1) .. b个 / b!
    LL C(int a, int b) {
        LL res = 1;
        for (int i = a, j = 1; j <= b; i--, j++) {
            res = res * i / j;
            // 大于n已无意义,且防止爆LL
            if (res > n) return res;
        }
        return res;
    }
    
    bool check(int k) {
        // 二分该斜行,找到大于等于该值的第一个数
        // 左边界2k,右边界为max(l, n)取二者最大即可!
        int l = 2 * k, r = max(n, l);
        while (l < r) {
            int mid = l + r >> 1;
            if (C(mid, k) >= n) r = mid;
            else
                l = mid + 1;
        }
        if (C(r, k) != n) return false;
        // C(r, k)的从0开始的顺序!
        cout << 1ll * (r + 1) * r / 2 + k + 1 << endl;
        return true;
    }
    
    int main() {
        cin >> n;
        // 从第16斜行枚举即可!
        for (int k = 16;; k--)
            if (check(k)) break;
        return 0;
    }
    

    I. 双向排序

    问题简述
    给定序列 (a_1,a_2,…,a_n=1,2,…,n,) 对该序列进行 (m)次 操作, 每次可能是对 [1, q]进行降序排列或者对[q, n] 进行升序排列

    问题分析
    没啥思路, 直接sort骗分了, 不过sort前判断了下当前是否有序, 有序直接调整了

    暂未解决

    J. 括号序列

    问题简述
    给定一个括号序列,要求尽可能少地添加若干括号使得括号序列变得合法

    问题分析
    分为两种特殊情况:

    1. 当左括号或右括号数量全为零, 此时是个卡特兰数
    2. 左括号与右括号相等, 不需要再插入括号

    暂未解决

    The desire of his soul is the prophecy of his fate
    你灵魂的欲望,是你命运的先知。

  • 相关阅读:
    smarty display和fetch的区别 简单
    ERRORLEVEL is not %ERRORLEVEL%
    孟岩 快速掌握一个语言最常用的50%
    Delphi 的用户们,早点开始享受 MSBuild 吧!
    DLL的Export和Import
    WinFX Architecture for developers
    孟岩 技术路线的选择重要但不具有决定性
    科技部基础软件产品重大专项2009年课题(基础软件产品部分 转载)
    nmake vs MSBuild
    关于nmake, build , sources 文件 WDM驱动程序设计之编译安装篇
  • 原文地址:https://www.cnblogs.com/RioTian/p/14719894.html
Copyright © 2011-2022 走看看