zoukankan      html  css  js  c++  java
  • HDU 1023 Traning Problem (2) 高精度卡特兰数

    Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u

     Status

    Description

    As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway. 
     

    Input

    The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file. 
     

    Output

    For each test case, you should output how many ways that all the trains can get out of the railway. 
     

    Sample Input

    1 2 3 10
     

    Sample Output

    1 2 5 16796

    Hint

     The result will be very large, so you may not process it by 32-bit integers. 
             
     

    Source

    求高精度的卡特兰数。

    1.java代码,套公式就可以了。

    import java.io.*;  
    import java.util.*;  
    import java.math.BigInteger;  
      
      
    public class Main  
    {  
        public static void main(String args[])  
        {         
            BigInteger[] a = new BigInteger[101];  
            a[0] = BigInteger.ZERO;  
            a[1] = BigInteger.valueOf(1);  
            for(int i = 2; i <= 100; ++i)  
                a[i] = a[i - 1].multiply(BigInteger.valueOf(4 * i - 2)).divide(BigInteger.valueOf(i+1));  
                Scanner in = new Scanner(System.in);  
                int n;  
                while(in.hasNext())  
                {  
                    n = in.nextInt();  
                    System.out.println(a[n]);  
                }  
        }  
    }  

     2.C++代码,kuangbin模板

    //h( n ) = ( ( 4*n-2 )/( n+1 )*h( n-1 ) );
    
    
    #include<stdio.h>
    
    //*******************************
    //打表卡特兰数
    //第 n个 卡特兰数存在a[n]中,a[n][0]表示长度;
    //注意数是倒着存的,个位是 a[n][1] 输出时注意倒过来。 
    //*********************************
    int a[105][100];
    void ktl()
    {
        int i,j,yu,len;
        a[2][0]=1;
        a[2][1]=2;
        a[1][0]=1;
        a[1][1]=1;
        len=1;
        for(i=3;i<101;i++)
        {
            yu=0;
            for(j=1;j<=len;j++)
            {
                int t=(a[i-1][j])*(4*i-2)+yu;
                yu=t/10;
                a[i][j]=t%10;
            }    
            while(yu)
            {
                a[i][++len]=yu%10;
                yu/=10;
            }
            for(j=len;j>=1;j--)
            {
                int t=a[i][j]+yu*10;
                a[i][j]=t/(i+1);
                yu = t%(i+1);
            }        
            while(!a[i][len])
            {
                len--;
            }    
            a[i][0]=len;
        }    
        
    }    
    int main()
    {
        ktl();
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            for(int i=a[n][0];i>0;i--)
            {
                printf("%d",a[n][i]);
            }    
            puts("");
        }    
        return 0;
    }

    3.C++代码

    #include <iostream>  
    #include <stdio.h>  
    #include <cmath>  
    using namespace std;  
      
    int a[105][105];    //大数卡特兰数  
    int b[105];         //卡特兰数的长度  
      
    void catalan()  //求卡特兰数  
    {  
        int i, j, len, carry, temp;  
        a[1][0] = b[1] = 1;  
        len = 1;  
        for(i = 2; i <= 100; i++)  
        {  
            for(j = 0; j < len; j++)    //乘法  
                a[i][j] = a[i-1][j]*(4*(i-1)+2);  
            carry = 0;  
            for(j = 0; j < len; j++)    //处理相乘结果  
            {  
                temp = a[i][j] + carry;  
                a[i][j] = temp % 10;  
                carry = temp / 10;  
            }  
            while(carry)    //进位处理  
            {  
                a[i][len++] = carry % 10;  
                carry /= 10;  
            }  
            carry = 0;  
            for(j = len-1; j >= 0; j--) //除法  
            {  
                temp = carry*10 + a[i][j];  
                a[i][j] = temp/(i+1);  
                carry = temp%(i+1);  
            }  
            while(!a[i][len-1])     //高位零处理  
                len --;  
            b[i] = len;  
        }  
    }  
      
    int main()  
    {  
        int i, n;  
        catalan();  
        while(scanf("%d", &n) != EOF)  
        {  
            for(i = b[n]-1; i>=0; i--)  
            {  
                printf("%d", a[n][i]);  
            }  
            printf("
    ");  
        }  
      
        return 0;  
    }  
  • 相关阅读:
    Android菜鸟的成长笔记(5)——Android系统源代码你下载了吗?
    2014年你不用担心的10件事
    Android菜鸟的成长笔记(4)——你真的理解了吗?
    3. MariaDB设置主从复制
    2. MariaDB激活二进制日志
    如何在CSDN博客自定义栏目中添加“给我写信”
    告别码农,成为真正的程序员
    微信公众平台开发(75)自定义菜单
    大文件分片上传,断点续传,秒传 实现
    大文件上传-大视频上传,T级别的,求解决方案
  • 原文地址:https://www.cnblogs.com/Ritchie/p/5343085.html
Copyright © 2011-2022 走看看