zoukankan      html  css  js  c++  java
  • Codeforces 424C(异或)

    Time Limit: 2000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u

     Status

    Description

    People in the Tomskaya region like magic formulas very much. You can see some of them below.

    Imagine you are given a sequence of positive integer numbers p1p2, ..., pn. Lets write down some magic formulas:

    Here, "mod" means the operation of taking the residue after dividing.

    The expression  means applying the bitwise xor (excluding "OR") operation to integers x and y. The given operation exists in all modern programming languages. For example, in languages C++ and Java it is represented by "^", in Pascal — by "xor".

    People in the Tomskaya region like magic formulas very much, but they don't like to calculate them! Therefore you are given the sequence p, calculate the value of Q.

    Input

    The first line of the input contains the only integer n (1 ≤ n ≤ 106). The next line contains n integers: p1, p2, ..., pn (0 ≤ pi ≤ 2·109).

    Output

    The only line of output should contain a single integer — the value of Q.

    Sample Input

    Input
    3
    1 2 3
    Output
    3

    Source

    Codeforces Round #242 (Div. 2)
    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    using namespace std;
    typedef long long LL;
    int a[1000005],b[1000005];
    int main()
    {
        int i,j,t,len,n,s,ans;
        while(scanf("%d",&n)!=EOF)
        {
            scanf("%d",&t);
            ans=t;
            for(i=2;i<=n;i++)
            {
                scanf("%d",&t);
                ans^=t;
            }
            b[0]=0;
            for(i=1;i<=n;i++)
            {
                b[i]=b[i-1]^i;
                int tmp=n/i;
                if(tmp&1)
                ans^=b[i-1];
                if(n%i)
                ans=ans^b[n%i];
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    C# get和set
    动手学pytorch-优化算法
    动手学pytorch-梯度下降
    动手学pytorch-凸优化
    动手学pytorch-Batch Norm
    动手学pytorch-经典卷积神经网络模型
    动手学pytorch-卷积神经网络基础
    动手学pytorch-Transformer代码实现
    动手学pytorch-机器翻译
    动手学pytorch-循环神经网络进阶
  • 原文地址:https://www.cnblogs.com/Ritchie/p/5425248.html
Copyright © 2011-2022 走看看