zoukankan      html  css  js  c++  java
  • 【ARC075F】Mirror

    Description

      
    ​   给定正整数(D),求有多少个正整数(N),满足(rev(N)=N+D)
      
    ​   其中(rev(N))表示将(N)的十进制表示翻转来读得到的数(翻转后忽略前导零)。
      
    ​   答案对(10^9+7)取模。
      
    ​   (D le 10^{9})
      
      (实际可以做到(D le 10^{5000})
      
      
      

    Solution

      
      ​ 原题(D le 10^9),暴力可过;但DP做法可以应用到更大的范围。
      
      ​
      
      ​ 考虑枚举(N)有多少位,记为(len)
      
    ​   显然(len)不能小于(D)的位数,否则一定不合法。并且可以证明,(len)超过(D)的位数的两倍时,就没有数合法了。再者(len==1)的时候也显然不合法。所以枚举区间是([max (2,|D|),2|D|])
      
    ​   设计一个DP来计算在(N)的长度为(len)时,有多少个数满足条件。
      
    ​   把和式画出来,并从两端向中间标号:
      

      
    ​   为什么要这么标号?因为既然是翻转,所以确定一组中的一对数((x,y))就可以确定另一对数((y,x))
      
    ​   还要考虑进位问题,那么状态里应该有表示进位的东西。
      
    ​   设(f_{i,j,k})表示第(i)组数,其中左边一组数从其右边有无收到进位((j=0,1)),且右边一组数给其左边有无进位((k=0,1)):
      
    ​  
      
    ​   枚举状态(f_{i,j,k}),正向转移到可去的状态。枚举(i+1)组的(x')选0...9,并通过右边一组数的(k)和相应位置的(D)的数位算出(y'')(k')。再用左边一组数的(j)来计算出(j')。如果(j'<0)或者(j'>1)就说明这个转移不合法,舍弃。因此,每个(x)的取值对应了唯一对应(有可能不合法,舍弃)的新状态(f_{i+1,j',k'}),将方案数加上即可。
      
    ​   注意第1组数的(x)不可以选0,不然会违背当前正在考虑长度为(len)(N)这个前提。
      
    ​   如果(len)是偶数,那么对于(i=1..frac{len}{2})计算(f),答案即为(f_{frac{len}2,0,0}+f_{frac{len}2,1,1})
      
    ​   如果(len)是奇数,则先对于(i=1...lfloor frac{len}2 floor)计算(f),先枚举每个最终状态,再枚举最中间一位选择(0...9),是否能满足各个进位与否的要求,统计进答案即可。
      
    ​  
      
    ​   总时间复杂度(mathcal O(frac{|D|^2}2*10*2*2)=mathcal O(|D|^220)),基本上不会跑满。我造数据时测了一下5000可以秒出,题目就开了5000的长度;然后我SUODCX后构造了一组特殊数据,使得(N)长度恰好是(2|D|)时也有解,几乎把复杂度卡满了,所以这个点只开到了3000(已经可以跑得出了).
      
      
       

    Code

      

    c++
    #include <cstdio>
    #include <cstring>
    using namespace std;
    const int N=10010,MOD=1e9+7;
    int d[N];
    int f[N][2][2];
    inline int max(int x,int y){
    	return x>y?x:y;
    }
    void readData(){
    	static char str[N];
    	scanf("%s",str+1);
    	d[0]=strlen(str+1);
    	for(int i=1;i<=d[0];i++) d[d[0]-i+1]=str[i]-'0';
    }
    int dp(int n){
    	int m=n>>1;
    	for(int i=0;i<=m;i++) 
    		for(int j=0;j<2;j++)
    			for(int k=0;k<2;k++)
    				f[i][j][k]=0;
    	f[0][0][0]=1;
    	for(int i=0;i<m;i++)
    		for(int j=0;j<2;j++)
    			for(int k=0;k<2;k++)
    				if(f[i][j][k]){
    					for(int x=0,y,j1,k1;x<10;x++){
    						k1=x+d[i+1]+k;
    						y=k1%10;
    						k1/=10;
    						j1=10*j+x-y-d[n-i];
    						if(j1<0||j1>1) continue;
    						if(!i&&(!x||!y)) continue;
    						(f[i+1][j1][k1]+=f[i][j][k])%=MOD;
    					}
    				}
    	int res=0;
    	if(n&1){
    		int mid=(n+1)>>1;
    		for(int j=0;j<2;j++)
    			for(int k=0;k<2;k++)
    				if(f[m][j][k])
    					for(int x=0,y;x<10;x++){
    						y=x+d[mid]+k;
    						if((x==y%10)&&(y/10==j))
    							(res+=f[m][j][k])%=MOD;
    					}
    	}
    	else{
    		for(int j=0;j<2;j++)
    			(res+=f[m][j][j])%=MOD;
    	}
    	return res;
    }
    void solve(){
    	int ans=0,maxlen=d[0]<<1;
    	for(int i=max(2,d[0]);i<=maxlen;i++)
    		(ans+=dp(i))%=MOD;
    	printf("%d
    ",ans<0?ans+MOD:ans);
    }
    int main(){
    	readData();
    	solve();
    	return 0;
    }
    
  • 相关阅读:
    JavaScript常用函数和方法
    Django中csrf错误
    LVS+Keepalived负载均衡配置
    CSP-S2019 游记
    三角函数公式整理
    LGOJP3193 [HNOI2008]GT考试
    BZOJ3790. 神奇项链
    BZOJ4241: 历史研究
    LGOJP2051 [AHOI2009]中国象棋
    AT2000 Leftmost Ball
  • 原文地址:https://www.cnblogs.com/RogerDTZ/p/9477526.html
Copyright © 2011-2022 走看看