zoukankan      html  css  js  c++  java
  • D

    There is an interesting calculator. It has 3 rows of buttons.

    Row 1: button 0, 1, 2, 3, ..., 9. Pressing each button appends that digit to the end of the display.

    Row 2: button +0, +1, +2, +3, ..., +9. Pressing each button adds that digit to the display.

    Row 3: button *0, *1, *2, *3, ..., *9. Pressing each button multiplies that digit to the display.

    Note that it never displays leading zeros, so if the current display is 0, pressing 5 makes it 5 instead of 05. If the current display is 12, you can press button 3, +5, *2 to get 256. Similarly, to change the display from 0 to 1, you can press 1 or +1 (but not both!).

    Each button has a positive cost, your task is to change the display from x to y with minimum cost. If there are multiple ways to do so, the number of presses should be minimized.

    Input

    There will be at most 30 test cases. The first line of each test case contains two integers x and y(0<=x<=y<=105). Each of the 3 lines contains 10 positive integers (not greater than 105), i.e. the costs of each button.

    Output

    For each test case, print the minimal cost and the number of presses.

    Sample Input

    12 256
    1 1 1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1 1 1
    12 256
    100 100 100 1 100 100 100 100 100 100
    100 100 100 100 100 1 100 100 100 100
    100 100 10 100 100 100 100 100 100 100
    

    Sample Output

    Case 1: 2 2
    Case 2: 12 3
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<iostream>
    #include<string>
    #include<vector>
    #include<stack>
    #include<bitset>
    #include<cstdlib>
    #include<cmath>
    #include<set>
    #include<list>
    #include<deque>
    #include<map>
    #include<queue>
    #define ll long long
    #define inf 0x3fffffff
    using namespace std;
    struct Node
    {
        int time;
        int cost;
        int value;
        friend bool operator < (Node a,Node b)
        {
            if(a.cost==b.cost)
                return a.time>b.time;
            return a.cost>b.cost;
        }
    }node;
    priority_queue<Node> q;
    int val[100005];
    int mp[5][15];
    int cas=1;
    int x,y,i,j;
    
    void bfs()
    {
        node.time=0;
        node.cost=0;
        node.value=x;
        while(!q.empty()) q.pop();
        q.push(node);
        val[x]=0;
        while(!q.empty())
        {
            Node tp,tmp=q.top();
            q.pop();
            if(tmp.value==y)
           {
                printf("Case %d: %d %d
    ",cas++,tmp.cost,tmp.time);
                return ;
            }
            for(int i=0;i<3;i++)
            {
                for(int j=0;j<=9;j++)
                {
                    if(i==0)
                        tp.value=tmp.value*10+j;
                    else if(i==1)
                        tp.value=tmp.value+j;
                    else
                        tp.value=tmp.value*j;
    
                        tp.cost=tmp.cost+mp[i][j];
                        tp.time=tmp.time+1;
    
                   if(tp.value<=y&&tp.cost<val[tp.value])
                     {
                           q.push(tp);
                         val[tp.value]=tp.cost;
                     }
                }
            }
        }
    }
    int main()
    {
        while(~scanf("%d%d",&x,&y))
        {
            for(int i=0;i<100005;i++)
            val[i]=999999;
            for(int i=0;i<3;i++)
            {
                for(int j=0;j<10;j++)
                {
                    scanf("%d",&mp[i][j]);
                }
            }
            bfs();
        }
        return 0;
    }
    View Code


  • 相关阅读:
    Div高度百分比
    字典树模板题 POJ 2503
    POJ 2828
    POJ 2186
    HDU 3397 双lazy标记的问题
    HDU 3911 区间合并求最大长度的问题
    CodeForces 444C 节点更新求变化值的和
    POJ 3667 线段树的区间合并简单问题
    HDU 4578 线段树复杂题
    UVAlive 3211 Now or Later
  • 原文地址:https://www.cnblogs.com/Roni-i/p/7406276.html
Copyright © 2011-2022 走看看