zoukankan      html  css  js  c++  java
  • 51nod 1183 编辑距离【线性dp+类似最长公共子序列】

    1183 编辑距离
    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
     收藏
     关注
    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
    例如将kitten一字转成sitting:
    sitten (k->s)
    sittin (e->i)
    sitting (->g)
    所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
    给出两个字符串a,b,求a和b的编辑距离。
     
    Input
    第1行:字符串a(a的长度 <= 1000)。
    第2行:字符串b(b的长度 <= 1000)。
    Output
    输出a和b的编辑距离
    Input示例
    kitten
    sitting
    Output示例
    3

    【分析】:
    设dp[i][j]代表a字符串前i个变形 b字符串前j个最小操作步数;
    此题类型和求两字符串最长公共子序列有相同部分,但最长公共序列对相同字符位置没有要求,但在此题中则是解题关键,
    若两位置相同,则不需任何操作,但若两相同部分之间相错n位,则需增加n次操作,同时还要考虑最优解;
    同时dp[i][0]=dp[0][i]=i;

    (1) 必须 S[i] == T[j], 这时前i – 1和j – 1位都已经对齐了,这部分肯定要最少扣分。这种情况下最少的扣分是dp(i-1,j-1)
    (2) 和(1)类似,S[i]≠T[j],这种情况下最少的扣分是dp(i - 1, j – 1) + 1
    (3) S的前i位和T的前(j – 1)位已经对齐了,这部分扣分也要最少。这种情况下最少的扣分是dp(i, j - 1) + 1
    (4) S的前(i - 1)位已经和T的前j位对齐了,这部分扣分要最少。这种情况下最少的扣分是dp(i - 1, j) + 1

    这样就能得到状态转移方程:

    dp(i,j) = min(dp(i – 1, j – 1) + ( S[i] == T[j] ? 0:1 ), dp(i – 1,j ) + 1, dp(i, j – 1) + 1)

    【代码】:

    #include <bits/stdc++.h>  
    using namespace std;  
    const int AX = 1e3+66;  
      
    int dp[AX][AX];  
    char a[AX];  
    char b[AX];  
      
    int main(){   
        while(~scanf("%s%s",a,b)){  
            memset(dp,0,sizeof(dp));  
            int n = strlen(a);  
            int m = strlen(b);  
            for( int i = 1 ; i <= n ; i++ ){  
                dp[i][0] = i;  
            }  
            for( int j = 1 ; j <= m ; j++ ){  
                dp[0][j] = j;  
            }  
            for( int i = 1 ; i <= n ; i++ ){  
                for( int j = 1 ; j <= m ;j++ ){  
                    if( a[i-1] != b[j-1] )  
                        dp[i][j] = min(dp[i-1][j-1],min(dp[i-1][j],dp[i][j-1])) + 1;  
                    else dp[i][j] = dp[i-1][j-1];  
                }  
            }  
            printf("%d
    ",dp[n][m]);  
        }  
        return 0;  
    }  
    View Code
  • 相关阅读:
    ios 关闭自动修正输入内容
    Tarjan+缩点【强连通分量】【模板】
    初识Tarjan算法
    【尺取法】【转】
    【先加后减拼凑思想】【合成数问题】
    强连通分量【k 算法、t 算法】
    大数【加减乘除】
    洛谷博客地址【置顶!】
    差分约束+spfa【模板】
    【poj3169】【差分约束+spfa】
  • 原文地址:https://www.cnblogs.com/Roni-i/p/7623356.html
Copyright © 2011-2022 走看看