zoukankan      html  css  js  c++  java
  • 紫薯 第十章

     1.欧几里得算法和唯一分解定理

    #include<iostream>  
    #include<algorithm>  
    #include<cstring>  
    #include<cstdio>  
    using namespace std;  
    int a[1000005];  
    int GCD(int a,int b)  
    {  
        if(a<b)swap(a,b);  
        return b==0?a:GCD(b,a%b);  
    }  
    int judge(int m)  
    {  
        a[1]/=GCD(a[1],a[0]);  
        for(int i=2;i<m;++i)  
        {  
            a[1]/=GCD(a[i],a[1]);  
             if(a[1]==1)  
                return 1;  
        }  
        return 0;  
    }  
    int main()  
    {  
        int n,m,i;  
        char str[1000005];  
        scanf("%d",&n);  
        while(n--)  
        {  
            memset(a,0,sizeof(a));  
            scanf("%s",&str);  
            for (i=0,m=0;str[i]!='';++i)  
            {  
                if(str[i]>='0'&&str[i]<='9')  
                    a[m]=a[m]*10+str[i]-'0';  
                else  
                    m++;  
            }  
            if(judge(m+1))  
            {  
                printf("YES
    ");  
            }  
            else  
            {  
                printf("NO
    ");  
            }  
        }  
        return 0;  
    }  
    除法表达式

     2.埃筛

    #include<stdio.h>
    #include<string.h>
    #include<math.h>
    bool visited[10000005];
    int prime[500000];
    int main(){
        int n, m;
        scanf("%d", &n, &m);
        int i, j, c = 0;
        int r = sqrt(n + 0.5);
        memset(visited, 0, sizeof(visited));
        for (i = 2; i <= r; i++){
            if (!visited[i]){
                prime[c++] = i;
                for (j = i * i; j <= n; j += i)
                    visited[j] = 1;
            }
        }
        memset(visited, 0, sizeof(visited));
        for (i = 0; i < c; i++){
            for (j = prime[i] * prime[i]; j <= n; j += prime[i] * prime[i])
                visited[j] = 1;
        }
        for (i = m; i <= n; i++){
            if (!visited[i])
                printf("%d ", i);
        }
    
        return 0;
    }
    无平方因子数

    3.拓展欧几里得算法

    #include<cstdio>
    using namespace std;
    const int INF = 1000; 
    void gcd(int a, int b, int &d, int &x, int &y)
    {
        if(!b)
        {
            d = a; x = 1; y = 0;
        }else{
            gcd(b, a%b, d, y, x);
            y -= x*(a/b);
        }
    }
    
    int main()
    {
        int a,b,c,d;
        scanf("%d%d%d",&a,&b,&c);         
        int x1,x2,y1,y2;
        scanf("%d%d%d%d",&x1,&x2,&y1,&y2);//整点的范围 
    
        int x0,y0;                       //ax+by=gcd(a,b)的一个解 
        gcd(a,b,d,x0,y0); 
        int a2 = a/d, b2 = b/d;         //其他解 
        int count = 0; 
    
        if(c%d==0)
        {
            for(int k=0; k<INF; k++)
            {
                x0 = x0+k*b2;
                y0 = y0-k*a2;
                if(x0<x1||x0>x2||y0<y1||y0>y2)
                continue;
                count++;
            }
        }
        printf("%d
    ",count);
        return 0;
    }
    直线上的点
  • 相关阅读:
    连接数据库代码
    C/C++ Basicsfunction pointer
    MSMQ&Com+ Service: How to create an Com+ Service in .NetFramework
    C/C++ Basics>about #define, const
    EndpointAddress
    MSMQ Basics Transactional Messages Processing
    Thread Basics(thread synchronization&Asynchronization) part two
    Thread Basics using Timer to trigger Event at a specified internals
    FAQ about AJAXpart II
    FAQ about AJAXpart I
  • 原文地址:https://www.cnblogs.com/Roni-i/p/8729785.html
Copyright © 2011-2022 走看看