zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 70 (Rated for Div. 2)

      菜是原罪

    A

      题意

      给出两串二进制数,将第二串乘上2^k之后把两串按二进制加起来反转,问k取多少使得结果呈字典序最小。

      题解

      想要反转后字典序最小,也就是把第二串最后1个1的位置与第一串相对应,将其向右移动多少位使得这两个1能对应,(两个1相加时消去变下一位)。

     

    #include <iostream>
    #include <cstring>
    #include <string>
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    #include <queue>
    #include <stack>
    #include <map>
    #define ull unsigned long long
    #define met(a, b) memset(a, b, sizeof(a))
    #define lowbit(x) (x&(-x))
    #define MID (l + r) / 2
    #define ll long long
    #define cinint(a) scanf("%d", &a)
    #define cinll(a) scanf("%lld", &a)
    #define cindouble(a) scanf("%lf", &a)
    #define cinstr(a) scanf(" %s", a)
    #define coutint(a) printf("%d
    ", a)
    #define coutll(a) printf("%lld
    ", a)
    #define coutdouble(a) printf("%lf
    ", a)
     
    using namespace std;
     
    const int maxn = 1e5 + 7;
    const ll mod = 1e6 + 3;
    const int inf = 0x3f3f3f3f;
    const ll INF = 0x3f3f3f3f3f3f3f3f;
     
    int main() {
        int T;
        cin >> T;
        while(T--) {
            string str1, str2;
            cin >> str1 >> str2;
            int len1 = str1.size();
            int len2 = str2.size();
            int i = len1 - 1, j = len2 - 1;
            while(str2[j] != '1') i--, j--;
            while(str1[i] != '1') i--;
            cout << len1 - i - len2 + j << endl;
        }
        return 0;
    }

    B

      题意

      有一种只有两个按键的计算器,一个增加x,一个增加y。现在给出一串数字,问在以(x, y)(0 <= x, y <= 10)为基础时,最少要添加多少个数使得这一串数字可以被这种计算器输出出来

      题解

      想要使得一串数字成立,也就是去看在串中每两个数字之间需要放入多少个数,那我们可以提前用最短路去处理出任意两个数字在(x, y)(0 <= x, y <= 10)时,从x到y最少需要多少个数,之后暴力去查询就好了。

    #include <iostream>
    #include <cstring>
    #include <string>
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    #include <queue>
    #include <stack>
    #include <map>
    #define ull unsigned long long
    #define ll long long
    #define met(a, b) memset(a, b, sizeof(a))
    #define lowbit(x) (x&(-x))
    #define MID (l + r) / 2
    
    using namespace std;
    
    const int mod = 3e7;
    const int inf = 0x3f3f3f3f;
    const ll INF = 0x3f3f3f3f3f3f3f3f;
    const int maxn = 5e3 + 7;
    
    int dp[11][11][11][11];
    queue<int> que;
    
    void cal(int i, int j) {
        for(int s = 0; s < 10; s++) {
            while(!que.empty()) que.pop();
            dp[i][j][s][(s+i) % 10] = dp[i][j][s][(s+j) % 10] = 1;
            que.push((s+i) % 10);
            que.push((s+j) % 10);
            while(!que.empty()) {
                int t = que.front();
                que.pop();
                if(dp[i][j][s][(t+i) % 10] == -1) {
                    dp[i][j][s][(t+i) % 10] = dp[i][j][s][t] + 1;
                    que.push((t+i) % 10);
                }
                if(dp[i][j][s][(t+j) % 10] == -1) {
                    dp[i][j][s][(t+j) % 10] = dp[i][j][s][t] + 1;
                    que.push((t+j) % 10);
                }
            }
        }
    }
    
    int cnt[11][11];
    
    int main() {
        met(dp, -1);
        for(int i = 0; i < 10; i++) {
            for(int j = 0; j < 10; j++) {
                cal(i, j);
            }
        }
        string str;
        cin >> str;
        for(int i = 1; i < str.size(); i++) ++cnt[str[i-1] - '0'][str[i] - '0'];
        for(int i = 0; i < 10; i++) {
            for(int j = 0; j < 10; j++) {
                int flag = 1;
                ll res = 0;
                for(int s = 0; s < 10 && flag; s++) {
                    for(int e = 0; e < 10 && flag; e++) {
                        if(!cnt[s][e]) continue;
                        if(dp[i][j][s][e] == -1) {
                            flag = 0;
                            res = -1;
                            break;
                        }
                        res += cnt[s][e]*(dp[i][j][s][e] - 1);
                    }
                }
                cout << res << ' ';
            }
            cout << endl;
        }
        return 0;
    }

    D

      题意

      给出n,让你给出一个串,使得其中子序列为“1337”的有n个。

      题解

      将串都写作1333……1111……337的格式就好了,前面的一个1和后面的37可以组成的个数取决于3也就是(C_m^2)个,后面的一串1与后面的37组成的个数取决于1的个数。

    #include <iostream>
    #include <cstring>
    #include <string>
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    #include <queue>
    #include <stack>
    #include <map>
    #define ull unsigned long long
    #define ll long long
    #define met(a, b) memset(a, b, sizeof(a))
    #define lowbit(x) (x&(-x))
    #define MID (l + r) / 2
    
    using namespace std;
    
    const int mod = 3e7;
    const int inf = 0x3f3f3f3f;
    const ll INF = 0x3f3f3f3f3f3f3f3f;
    const int maxn = 5e3 + 7;
    
    int main() {
        int T;
        cin >> T;
        while(T--) {
            int n;
            cin >> n;
            int t = 2;
            while((t-1)*t/2 <= n) ++t;
            --t;
            cout << "1";
            for(int i = 1; i <= t-2; i++) cout << "3";
            t = n - (t-1)*t/2;
            for(int i = 1; i <= t; i++) cout << "1";
            cout << "337" << endl;
        }
        return 0;
    }
  • 相关阅读:
    密码验证合格程序(Python)
    Python找到所有子集
    Semi-Supervised Classification with Graph Convolutional Networks 阅读笔记
    2018 ICPC南京网络赛 L Magical Girl Haze 题解
    2018 CCPC网络赛 hdu6444 Neko's loop
    2018 CCPC 网络赛 Buy and Resell
    实对称矩阵可对角化证明
    矩阵的极分解证明
    关于欧几里得空间上的仿射变换的直观几何理解
    Codeforces Hello 2018 E题Logical Expression dp+最短路 好题
  • 原文地址:https://www.cnblogs.com/Ruby-Z/p/11345983.html
Copyright © 2011-2022 走看看