zoukankan      html  css  js  c++  java
  • 「多项式乘法逆」

    前置芝士

    多项式乘法

    基本问题

    给定一个 (n) 次多项式 (F(x)),求 (G(x)) 满足:

    [F(x) imes G(x)equiv 1mod x^n ]

    假设有一个 (0) 次多项式 (F(x)),易得 (F(x))(G(x)) 的逆元, 这给我们提供了一个分治的思路。

    假设已有:

    [G'(x)equiv F(x)mod x^{left lceil frac {n}{2} ight ceil} ]

    • 考虑为什么要向上取整

    我们分治的思路是得到两个区间来合并到一个区间,我们要保证合并后的区间长度要大于 (n)

    则有:

    [G(x)-G'(x)equiv 0mod x^{left lceil frac {n}{2} ight ceil} ]

    两边同时平方:

    [(G(x)-G'(x))^2equiv 0mod x^n ]

    [G^2(x)-2G(x)G'(x)+G'^2(x)equiv 0mod x^n ]

    两边同乘 (F(x))

    [F(x)G^2(x)-2F(x)G(x)G'(x)+F(x)G'^2(x)equiv 0mod x^n ]

    [ecause F(x)G(x)equiv 1mod x^n ]

    [G(x)-2G'(x)+F(x)G'^2(x)equiv 0mod x^n ]

    [G(x)equiv 2G'(x)-F(x)G'^2(x)mod x^n ]

    最后递归求解即可

    代码
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    using namespace std;
    
    const int maxn = 3e5 + 50, INF = 0x3f3f3f3f, mod = 998244353, inv3 = 332748118;
    
    inline int read () {
    	register int x = 0, w = 1;
    	register char ch = getchar ();
    	for (; ch < '0' || ch > '9'; ch = getchar ()) if (ch == '-') w = -1;
    	for (; ch >= '0' && ch <= '9'; ch = getchar ()) x = x * 10 + ch - '0';
    	return x * w;
    }
    
    inline void write (register int x) {
    	if (x / 10) write (x / 10);
    	putchar (x % 10 + '0');
    }
    
    int n, f[maxn], g[maxn], rev[maxn], res[maxn], a[maxn], b[maxn];
    
    inline int qpow (register int a, register int b, register int ans = 1) {
    	for (; b; b >>= 1, a = 1ll * a * a % mod) 
    		if (b & 1) ans = 1ll * ans * a % mod;
    	return ans;
    }
    
    inline void NTT (register int len, register int * a, register int opt) {
    	for (register int i = 1; i < len; i ++) if (i < rev[i]) swap (a[i], a[rev[i]]);
    	for (register int d = 1; d < len; d <<= 1) {
    		register int w1 = qpow (opt, (mod - 1) / (d << 1));
    		for (register int i = 0; i < len; i += d << 1) {
    			register int w = 1;
    			for (register int j = 0; j < d; j ++, w = 1ll * w * w1 % mod) {
    				register int x = a[i + j], y = 1ll * w * a[i + j + d] % mod;
    				a[i + j] = (x + y) % mod, a[i + j + d] = (x - y + mod) % mod;
    			}
    		}
    	}
    }
    
    inline void Poly_Inv (register int d, register int * a, register int * b) {
    	if (d == 1) return b[0] = qpow (a[0], mod - 2), void (); // 长度为1,只有常数项
    	Poly_Inv ((d + 1) >> 1, a, b); // 向下递归
    	register int len = 1, bit = 0;
    	while (len <= d << 1) len <<= 1, bit ++;
    	for (register int i = 0; i < len; i ++) res[i] = 0, rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << bit - 1);
    	for (register int i = 0; i < d; i ++) res[i] = a[i];
    	NTT (len, res, 3), NTT (len, b, 3);
    	for (register int i = 0; i < len; i ++) b[i] = ((2ll * b[i] % mod - 1ll * res[i] * b[i] % mod * b[i] % mod) % mod + mod) % mod; // 套公式
    	NTT (len, b, inv3);
    	register int inv = qpow (len, mod - 2);
    	for (register int i = 0; i < d; i ++) b[i] = 1ll * b[i] * inv % mod;
    	for (register int i = d; i < len; i ++) b[i] = 0; // 记得清零,下次NTT要用
    }
    
    inline void P4238 () {
    	n = read() - 1;
    	for (register int i = 0; i <= n; i ++) f[i] = read(); Poly_Inv (n + 1, f, g);
    	for (register int i = 0; i <= n; i ++) printf ("%d ", g[i]); putchar ('
    ');
    }
    
    int main () {
    	return P4238 (), 0;
    }
    
  • 相关阅读:
    常用的正则表达式
    Spring
    Hibernate-04
    Hibernate-03
    Hibernate-02
    Hibernate-01
    装饰器(python)
    软件工程之小组选题报告
    小组项目之需求分析与原型设计
    关于group_concat函数拼接字符超长的问题
  • 原文地址:https://www.cnblogs.com/Rubyonly233/p/14208389.html
Copyright © 2011-2022 走看看