题意:求C (n,0),C (n,1),C (n,2)...C (n,n)中奇数的个数
分析:Lucas 定理:A、B是非负整数,p是质数。AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) mod p同。即:Lucas (n,m,p)=C (n%p,m%p) * Lucas (n/p,m/p,p)
我是打表找规律的,就是: 2^二进制下1的个数。这定理可以求C (n, m) % p 详细解释
收获:1. 没思路时一定要打个表找找规律 2. Lucas定理
代码:
/************************************************ * Author :Running_Time * Created Time :2015-8-27 8:48:05 * File Name :J.cpp ************************************************/ #include <cstdio> #include <algorithm> #include <iostream> #include <sstream> #include <cstring> #include <cmath> #include <string> #include <vector> #include <queue> #include <deque> #include <stack> #include <list> #include <map> #include <set> #include <bitset> #include <cstdlib> #include <ctime> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 1e5 + 10; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; int main(void) { int n; while (scanf ("%d", &n) == 1) { int cnt = 0; while (n) { if (n & 1) cnt++; n >>= 1; } ll ans = 1; for (int i=1; i<=cnt; ++i) ans *= 2; printf ("%I64d ", ans); } return 0; }