zoukankan      html  css  js  c++  java
  • Miller&&Pollard HDOJ 4344 Mark the Rope

    题目传送门

    题意:一个长为n(n<2^63)的管子,在管子上做标记,每隔L个长度单位做一个标记,从管子头端开始,保证最后一次标记恰好在管子的尾端。让你找出有多少个这样的L(L<n),且他们之间两两互素,然后求出这些L的和最大值。

    分析:转换一下就是求n有多少个质因子用pollard_rho大整数分解分解n,因为素数之间两两互质,所以每段L都由每个质因子的k次幂组成,如果n是素数,由于L<n,所以只能L==1

    收获:接触到随机算法

    代码:

    /************************************************
    * Author        :Running_Time
    * Created Time  :2015-8-28 14:38:38
    * File Name     :E.cpp
     ************************************************/
    
    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int N = 1e5 + 10;
    const int S = 20;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    
    ll GCD(ll a, ll b)	{
    	if (a == 0)	return 1;
    	if (a < 0)	a = -a;
    	while (b)	{
    		ll c = a % b;
    		a = b; b = c;
    	}
    	return a;
    }
    
    ll multi_mod(ll a, ll b, ll p)	{
    	ll ret = 0;
    	a %= p;	b %= p;
    	while (b)	{
    		if (b & 1)	{
    			ret += a;
    			if (ret >= p)	ret -= p;
    		}
    		a <<= 1;
    		if (a >= p)	a -= p;
    		b >>= 1;
    	}
    	return ret;
    }
    
    
    ll pow_mod(ll a, ll x, ll p)	{
    	ll ret = 1;
    	a %= p;
    	while (x)	{
    		if (x & 1)	ret = multi_mod (ret, a, p);
    		a = multi_mod (a, a, p);
    		x >>= 1;
    	}
    	return ret;
    }
    
    bool check(ll a, ll n, ll x, int t)	{
    	ll ret = pow_mod (a, x, n);
    	ll last = ret;
    	for (int i=1; i<=t; ++i)	{
    		ret = multi_mod (ret, ret, n);
    		if (ret == 1 && last != 1 && last != n - 1)	return true;	//合数
    		last = ret;
    	}
    	if (ret != 1)	return true;
    	return false;
    }
    
    bool Miller_Rabin(ll n)	{
    	if (n == 2)	return true;
    	if (n < 2 || ! (n & 1))	return false;			//偶数或1
    	ll x = n - 1;	int t = 0;
    	while (! (x & 1))	{
    		x >>= 1;	t++;
    	}
    	for (int i=1; i<=S; ++i)	{
    		ll a = rand () % (n - 1) + 1;
    		if (check (a, n, x, t))	return false;		//合数
    	}
    	return true;
    }
    
    
    ll Pollard_rho(ll x, ll c)	{
    	ll i = 1, k = 2;
    	ll a = rand () % x;
    	ll b = a;
    	while (1)	{
    		i++;
    		a = (multi_mod (a, a, x) + c) % x;
    		ll d = GCD (b - a, x);
    		if (d != 1 && d != x)	return d;
    		if (b == a)	return x;
    		if (i == k)	b = a, k += k;
    	}
    }
    
    void factorize(ll n, vector<ll> &ret)	{
    	if (Miller_Rabin (n))	{	
    		ret.push_back (n);	return ;
    	}
    	ll p = n;
    	while (p >= n)	p = Pollard_rho (p, rand () % (n - 1) + 1);
    	factorize (p, ret);
    	factorize (n / p, ret);
    }
    
    int main(void)    {
    	srand (time (NULL));
    	int T;	scanf ("%d", &T);
    	while (T--)	{
    		ll n;	scanf ("%I64d", &n);
    		vector<ll> ret;
    		factorize (n, ret);
    		sort (ret.begin (), ret.end ());
    		ll sum = 0, cnt = 0;
    		for (int i=0; i<ret.size (); ++i)	{
    			ll tmp = ret[i];
    			while (i + 1 < ret.size () && ret[i] == ret[i+1])	tmp *= ret[i++];
    			sum += tmp;	cnt++;
    		}
    
    		if (cnt == 1)	sum /= ret[0];
    		printf ("%I64d %I64d
    ", cnt, sum);
    	}
    	
        return 0;
    }
    

      

    编译人生,运行世界!
  • 相关阅读:
    程序员都必读
    ia-64 vs x86-64
    Linux内核学习
    开源liscense对比
    列存储
    大数据科普
    [USACO1.5]数字三角形
    [USACO08FEB]酒店Hotel
    数的划分
    CodeForce 18D
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4766798.html
Copyright © 2011-2022 走看看