zoukankan      html  css  js  c++  java
  • 逆序数 HDOJ 4911 Inversion

    题目传送门

    题意:可以交换两个相邻的数字顺序k次,问最后逆序对最少有多少

    分析:根据逆序数的定理如果逆序数大于0,那么必定存在1<=i<n使得i和i+1交换后逆序数减1假设原逆序数为cnt,这样的话,我们就可以得到答案是max(cnt-k,0)求逆序数可以用归并的方法

    代码:

    /************************************************
    * Author        :Running_Time
    * Created Time  :2015/9/12 星期六 20:31:07
    * File Name     :J.cpp
     ************************************************/
    
    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int N = 1e5 + 10;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    int a[N], L[N/2], R[N/2];
    ll cnt;
    
    void Merge(int *a, int p, int q, int r)   {
        int n1 = q - p + 1, n2 = r - q;
        for (int i=1; i<=n1; ++i)   L[i] = a[p+i-1];
        for (int i=1; i<=n2; ++i)   R[i] = a[q+i];
        L[n1+1] = R[n2+1] = INF;
        for (int i=1, j=1, k=p; k<=r; ++k)  {
            if (L[i] <= R[j])    a[k] = L[i++];
            else    {
                a[k] = R[j++];  cnt += n1 - i + 1;
            }
        }
    }
    
    void Merge_Sort(int *a, int p, int r)   {
        if (p < r)  {
            int q = (p + r) >> 1;
            Merge_Sort (a, p, q);
            Merge_Sort (a, q+1, r);
            Merge (a, p, q, r);
        }
    }
    
    int main(void)    {
        int n;  ll k;
        while (scanf ("%d%I64d", &n, &k) == 2) {
            for (int i=1; i<=n; ++i)    scanf ("%d", &a[i]);
            cnt = 0;
            Merge_Sort (a, 1, n);
            printf ("%I64d
    ", max (cnt - k, (ll) 0));
        }
        
        return 0;
    }
    

      

    编译人生,运行世界!
  • 相关阅读:
    Redis缓存穿透
    如何应对缓存穿透和缓存雪崩问题
    Redis缓存雪崩
    redis缓存机制
    C# LINQ学习笔记三:LINQ to OBJECT之操作字符串
    C# LINQ学习笔记二:LINQ标准查询操作概述
    C# LINQ学习笔记一:走进LINQ的世界
    C# Lambda表达式学习笔记
    C#委托与事件学习笔记
    C#泛型学习笔记
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4803593.html
Copyright © 2011-2022 走看看