题意:从(1, 1)走到(n, m),每次往右或往下走,问(N+M−1)∑(Ai−Aavg)2 的最小值
分析:展开式子得到(N+M−1)∑(Ai2) - (∑(Ai))2的最小值。用普通的搜索要不超时要不爆内存,用dp。注意到和的值很小,最多59*30,所以dp[i][j][k]表示当走到(i, j)点时和为k的最小的平方和,两个方向转移。
/************************************************ * Author :Running_Time * Created Time :2015/9/28 星期一 08:16:33 * File Name :I.cpp ************************************************/ #include <cstdio> #include <algorithm> #include <iostream> #include <sstream> #include <cstring> #include <cmath> #include <string> #include <vector> #include <queue> #include <deque> #include <stack> #include <list> #include <map> #include <set> #include <bitset> #include <cstdlib> #include <ctime> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 33; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; const double EPS = 1e-8; int dp[N][N][N*2*N]; int a[N][N]; int main(void) { int T, cas = 0; scanf ("%d", &T); while (T--) { int n, m; scanf ("%d%d", &n, &m); for (int i=1; i<=n; ++i) { for (int j=1; j<=m; ++j) { scanf ("%d", &a[i][j]); } } int S = 59 * 30; memset (dp, INF, sizeof (dp)); dp[1][1][a[1][1]] = a[1][1] * a[1][1]; for (int i=1; i<=n; ++i) { for (int j=1; j<=m; ++j) { for (int k=0; k<=S; ++k) { int &u = dp[i][j][k]; if (u == INF) continue; if (i + 1 <= n) { int &v = dp[i+1][j][k+a[i+1][j]]; v = min (v, u + a[i+1][j] * a[i+1][j]); } if (j + 1 <= m) { int &v = dp[i][j+1][k+a[i][j+1]]; v = min (v, u + a[i][j+1] * a[i][j+1]); } } } } int ans = INF; for (int i=0; i<=S; ++i) { if (dp[n][m][i] == INF) continue; ans = min (ans, (n + m - 1) * dp[n][m][i] - i * i); } printf ("Case #%d: %d ", ++cas, ans); } return 0; }