zoukankan      html  css  js  c++  java
  • 并查集+树链剖分+线段树 HDOJ 5458 Stability(稳定性)

    题目链接

    题意:

      有n个点m条边的无向图,有环还有重边,a到b的稳定性的定义是有多少条边,单独删去会使a和b不连通。有两种操作:

      1. 删去a到b的一条边

      2. 询问a到b的稳定性

    思路:

      首先删边考虑离线,倒着做,相对于加边。先用并查集建一棵树,最精简的图,初始化树上的每条边权值为1,那么在a和b点加一条边的话,会使a到b的链上所有边因为这条新边而稳定性贡献无效,这样我们可以树链剖分,用线段树维护链上的边的稳定性贡献值。

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 3e4 + 5;
    const int M = 1e5 + 5;
    int n, m, q;
    
    struct Edge {
        int v, nex;
    }edge[M<<2];
    int head[N];
    int etot;
    
    void init_edge() {
        memset (head, -1, sizeof (head));
        etot = 0;
    }
    
    void add_edge(int u, int v) {
        edge[etot] = (Edge) {v, head[u]};
        head[u] = etot++;
    }
    
    #define lson l, mid, o << 1
    #define rson mid + 1, r, o << 1 | 1
    
    int sum[N<<2], lazy[N<<2];
    
    void push_up(int o) {
        sum[o] = sum[o<<1] + sum[o<<1|1];
    }
    
    void push_down(int l, int r, int o) {
        if (lazy[o] != -1) {
            lazy[o<<1] = lazy[o];
            lazy[o<<1|1] = lazy[o];
            int mid = l + r >> 1;
            sum[o<<1] = lazy[o] * (mid - l + 1);
            sum[o<<1|1] = lazy[o] * (r - mid + 1);
            lazy[o] = -1;
        }
    }
    
    void build(int l, int r, int o) {
        lazy[o] = -1;
        if (l == r) {
            sum[o] = 1;
            return ;
        }
        int mid = l + r >> 1;
        build (lson);
        build (rson);
        push_up (o);
    }
    
    int query(int ql, int qr, int l, int r, int o) {
        if (ql <= l && r <= qr) {
            return sum[o];
        }
        push_down (l, r, o);
        int mid = l + r >> 1, ret = 0;
        if (ql <= mid) ret += query (ql, qr, lson);
        if (qr > mid) ret += query (ql, qr, rson);
        return ret;
    }
    
    void updata(int ql, int qr, int c, int l, int r, int o) {
        if (ql <= l && r <= qr) {
            sum[o] = (r - l + 1) * c;
            lazy[o] = c;
            return ;
        }
        push_down (l, r, o);
        int mid = l + r >> 1;
        if (ql <= mid) updata (ql, qr, c, lson);
        if (qr > mid) updata (ql, qr, c, rson);
        push_up (o);
    }
    
    int sz[N], fa[N], dfn[N], belong[N];
    int tim;
    
    void DFS2(int u, int chain) {
        dfn[u] = ++tim;
        belong[u] = chain;
        int k = 0;
        for (int i=head[u]; ~i; i=edge[i].nex) {
            Edge &e = edge[i];
            if (e.v == fa[u]) continue;
            if (sz[e.v] > sz[k]) k = e.v;
        }
        if (k) DFS2 (k, chain);
        for (int i=head[u]; ~i; i=edge[i].nex) {
            Edge &e = edge[i];
            if (e.v == fa[u] || e.v == k) continue;
            DFS2 (e.v, e.v);
        }
    }
    
    void DFS(int u, int pa) {
        sz[u] = 1;
        fa[u] = pa;
        for (int i=head[u]; ~i; i=edge[i].nex) {
            Edge &e = edge[i];
            if (e.v == pa) continue;
            DFS (e.v, u);
            sz[u] += sz[e.v];
        }
    }
    
    int query_ans(int u, int v) {
        int ret = 0;
        int p = belong[u], q = belong[v];
        while (p != q) {
            if (dfn[p] < dfn[q]) {
                swap (p, q);
                swap (u, v);
            }
            ret += query (dfn[p], dfn[u], 1, n, 1);
            u = fa[p];
            p = belong[u];
        }
        if (dfn[u] < dfn[v]) swap (u, v);
        if (u != v) {
            ret += query (dfn[v]+1, dfn[u], 1, n, 1);
        }
        return ret;
    }
    
    void modify(int u, int v) {
        int p = belong[u], q = belong[v];
        while (p != q) {
            if (dfn[p] < dfn[q]) {
                swap (p, q);
                swap (u, v);
            }
            updata (dfn[p], dfn[u], 0, 1, n, 1);
            u = fa[p];
            p = belong[u];
        }
        if (dfn[u] < dfn[v]) swap (u, v);
        if (u != v) {
            updata (dfn[v]+1, dfn[u], 0, 1, n, 1);
        }
    }
    
    void prepare() {
        sz[0] = 0;
        DFS (1, 0);
        tim = 0;
        DFS2 (1, 1);
        build (1, n, 1);
    }
    
    int rt[N];
    
    int Find(int x) {
        return rt[x] == x ? x : rt[x] = Find (rt[x]);
    }
    
    multiset<pair<int, int> > mset1, mset2;
    int op[M], x[M], y[M];
    int ans[M];
    
    int main() {
        int T, cas = 0;
        scanf ("%d", &T);
        while (T--) {
            init_edge ();
            scanf ("%d%d%d", &n, &m, &q);
            for (int i=1; i<=n; ++i) {
                rt[i] = i;
            }
            mset1.clear ();
            for (int i=1; i<=m; ++i) {
                int u, v;
                scanf ("%d%d", &u, &v);
                if (u > v) swap (u, v);
                mset1.insert ({u, v});
            }
            for (int i=1; i<=q; ++i) {
                scanf ("%d%d%d", &op[i], &x[i], &y[i]);
                if (x[i] > y[i]) swap (x[i], y[i]);
                if (op[i] == 1) mset1.erase (mset1.find ({x[i], y[i]}));
            }
            mset2.clear ();
            for (auto &it: mset1) {
                int p = Find (it.first), q = Find (it.second);
                if (p == q) continue;
                mset2.insert (it);
                add_edge (it.first, it.second);
                add_edge (it.second, it.first);
                rt[p] = q;
            }
            
            prepare ();
    
            for (auto &it: mset1) {
                if (mset2.find (it) == mset2.end ()) {
                    modify (it.first, it.second);
                }
            }
            for (int i=q; i>=1; --i) {
                if (op[i] == 1) {
                    modify (x[i], y[i]);
                } else {
                    ans[i] = query_ans (x[i], y[i]);
                }
            }
            
            printf ("Case #%d:
    ", ++cas);
            for (int i=1; i<=q; ++i) {
                if (op[i] == 2) {
                    printf ("%d
    ", ans[i]);
                }
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    work_7_Boolean和boolean,基本类型和包装类型
    work_06_服务器上传图片错误
    work_05_64未随机id生成器
    work_04_谷歌验证码工具Kaptcha
    vue.js_13_vue的搭建
    每日一java(割草机)
    work_03_常见jq问题处理
    work_02_css样式
    java 27
    java 27
  • 原文地址:https://www.cnblogs.com/Running-Time/p/5680253.html
Copyright © 2011-2022 走看看