题意:
有n个点m条边的无向图,有环还有重边,a到b的稳定性的定义是有多少条边,单独删去会使a和b不连通。有两种操作:
1. 删去a到b的一条边
2. 询问a到b的稳定性
思路:
首先删边考虑离线,倒着做,相对于加边。先用并查集建一棵树,最精简的图,初始化树上的每条边权值为1,那么在a和b点加一条边的话,会使a到b的链上所有边因为这条新边而稳定性贡献无效,这样我们可以树链剖分,用线段树维护链上的边的稳定性贡献值。
#include <bits/stdc++.h> using namespace std; const int N = 3e4 + 5; const int M = 1e5 + 5; int n, m, q; struct Edge { int v, nex; }edge[M<<2]; int head[N]; int etot; void init_edge() { memset (head, -1, sizeof (head)); etot = 0; } void add_edge(int u, int v) { edge[etot] = (Edge) {v, head[u]}; head[u] = etot++; } #define lson l, mid, o << 1 #define rson mid + 1, r, o << 1 | 1 int sum[N<<2], lazy[N<<2]; void push_up(int o) { sum[o] = sum[o<<1] + sum[o<<1|1]; } void push_down(int l, int r, int o) { if (lazy[o] != -1) { lazy[o<<1] = lazy[o]; lazy[o<<1|1] = lazy[o]; int mid = l + r >> 1; sum[o<<1] = lazy[o] * (mid - l + 1); sum[o<<1|1] = lazy[o] * (r - mid + 1); lazy[o] = -1; } } void build(int l, int r, int o) { lazy[o] = -1; if (l == r) { sum[o] = 1; return ; } int mid = l + r >> 1; build (lson); build (rson); push_up (o); } int query(int ql, int qr, int l, int r, int o) { if (ql <= l && r <= qr) { return sum[o]; } push_down (l, r, o); int mid = l + r >> 1, ret = 0; if (ql <= mid) ret += query (ql, qr, lson); if (qr > mid) ret += query (ql, qr, rson); return ret; } void updata(int ql, int qr, int c, int l, int r, int o) { if (ql <= l && r <= qr) { sum[o] = (r - l + 1) * c; lazy[o] = c; return ; } push_down (l, r, o); int mid = l + r >> 1; if (ql <= mid) updata (ql, qr, c, lson); if (qr > mid) updata (ql, qr, c, rson); push_up (o); } int sz[N], fa[N], dfn[N], belong[N]; int tim; void DFS2(int u, int chain) { dfn[u] = ++tim; belong[u] = chain; int k = 0; for (int i=head[u]; ~i; i=edge[i].nex) { Edge &e = edge[i]; if (e.v == fa[u]) continue; if (sz[e.v] > sz[k]) k = e.v; } if (k) DFS2 (k, chain); for (int i=head[u]; ~i; i=edge[i].nex) { Edge &e = edge[i]; if (e.v == fa[u] || e.v == k) continue; DFS2 (e.v, e.v); } } void DFS(int u, int pa) { sz[u] = 1; fa[u] = pa; for (int i=head[u]; ~i; i=edge[i].nex) { Edge &e = edge[i]; if (e.v == pa) continue; DFS (e.v, u); sz[u] += sz[e.v]; } } int query_ans(int u, int v) { int ret = 0; int p = belong[u], q = belong[v]; while (p != q) { if (dfn[p] < dfn[q]) { swap (p, q); swap (u, v); } ret += query (dfn[p], dfn[u], 1, n, 1); u = fa[p]; p = belong[u]; } if (dfn[u] < dfn[v]) swap (u, v); if (u != v) { ret += query (dfn[v]+1, dfn[u], 1, n, 1); } return ret; } void modify(int u, int v) { int p = belong[u], q = belong[v]; while (p != q) { if (dfn[p] < dfn[q]) { swap (p, q); swap (u, v); } updata (dfn[p], dfn[u], 0, 1, n, 1); u = fa[p]; p = belong[u]; } if (dfn[u] < dfn[v]) swap (u, v); if (u != v) { updata (dfn[v]+1, dfn[u], 0, 1, n, 1); } } void prepare() { sz[0] = 0; DFS (1, 0); tim = 0; DFS2 (1, 1); build (1, n, 1); } int rt[N]; int Find(int x) { return rt[x] == x ? x : rt[x] = Find (rt[x]); } multiset<pair<int, int> > mset1, mset2; int op[M], x[M], y[M]; int ans[M]; int main() { int T, cas = 0; scanf ("%d", &T); while (T--) { init_edge (); scanf ("%d%d%d", &n, &m, &q); for (int i=1; i<=n; ++i) { rt[i] = i; } mset1.clear (); for (int i=1; i<=m; ++i) { int u, v; scanf ("%d%d", &u, &v); if (u > v) swap (u, v); mset1.insert ({u, v}); } for (int i=1; i<=q; ++i) { scanf ("%d%d%d", &op[i], &x[i], &y[i]); if (x[i] > y[i]) swap (x[i], y[i]); if (op[i] == 1) mset1.erase (mset1.find ({x[i], y[i]})); } mset2.clear (); for (auto &it: mset1) { int p = Find (it.first), q = Find (it.second); if (p == q) continue; mset2.insert (it); add_edge (it.first, it.second); add_edge (it.second, it.first); rt[p] = q; } prepare (); for (auto &it: mset1) { if (mset2.find (it) == mset2.end ()) { modify (it.first, it.second); } } for (int i=q; i>=1; --i) { if (op[i] == 1) { modify (x[i], y[i]); } else { ans[i] = query_ans (x[i], y[i]); } } printf ("Case #%d: ", ++cas); for (int i=1; i<=q; ++i) { if (op[i] == 2) { printf ("%d ", ans[i]); } } } return 0; }