Protobuf是什么
Protobuf实际是一套类似Json或者XML的数据传输格式和规范,用于不同应用或进程之间进行通信时使用。通信时所传递的信息是通过Protobuf定义的message数据结构进行打包,然后编译成二进制的码流再进行传输或者存储。
Protobuf的优点
相比较而言,Protobuf有如下优点:
- 足够简单
- 序列化后体积很小:消息大小只需要XML的1/10 ~ 1/3
- 解析速度快:解析速度比XML快20 ~ 100倍
- 多语言支持
- 更好的兼容性,Protobuf设计的一个原则就是要能够很好的支持向下或向上兼容
使用protobuf的原由
一个好的软件框架应该要有明确的输入和输出,对于CNN网络而言,其主要有两部分组成:网络具体结构和网络的具体优化算法及参数。对于框架的使用者而言,用户只需输入两个描述文件即可得到对该网络的优化结果,这无疑是非常方便的。
caffe框架选择使用谷歌的开源protobuf工具对这两部分进行描述,解析和存储,这一部分为caffe的实现节省了大量的代码。
如前面讲述的目标检测demo,py-faster-rcnn,其主要分为训练和测试两个过程,两个过程的核心文件都是prototxt格式的文本文件。
如训练过程
输入:
(1)slover.prototxt。描述网络训练时的各种参数文件,如训练的策略,学习率的变化率,模型保存的频率等参数
(2)train.prototxt。描述训练网络的网络结构文件。
(3)test.prototxt。描述测试网络的网络结构文件。
输出:
VGG16.caffemodel:保存的训练好的网络参数文件。
protobuf的使用流程
protobuf工具主要是数据序列化存储和解析。在实际使用的时候主要是作为一个代码自动生成工具来使用,通过生成对所定义的数据结构的标准读写代码,用户可以通过标准的读写接口从文件中进行数据的读取,解析和存储。
目前proto支持C++,python,java等语言,这里主要演示caffe中使用的C++调用。
主要使用过程为:
(1)编写XXX.proto文件。该文件里主要定义了各种数据结构及对应的数据类型,如int,string等。
(2)使用protoc对XXX.proto文件进行编译,生成对应的数据结构文件的读取和写入程序,程序接口都是标准化的。生成的文件一般名为XXX.pb.cc和XXX.pb.h。
(3)在新程序中使用XXX.pb.c和XXX.pb.h提供的代码。
python读取caffemodel文件
caffemodel是二进制的protobuf文件,利用protobuf的python接口可以读取它,解析出需要的内容
不少算法都是用预训练模型在自己数据上微调,即加载“caffemodel”作为网络初始参数取值,然后在此基础上更新。使用方式往往是:同时给定solver的prototxt文件,以及caffemodel权值文件,然后从solver创建网络,并从caffemodel读取网络权值的初值。能否不加载solver的prototxt,只加载caffemodel并看看它里面都有什么东西?
利用protobuf的python接口(C++接口也可以,不过编写代码和编译都略麻烦),能够读取caffemodel内容。教程当然是参考protobuf官网的例子了。
阶段1:完全模仿protobuf官网例子
我这里贴一个最noob的用法吧,用protobuf的python接口读取caffemodel文件。配合jupyter-notebook
命令开启的jupyter笔记本,可以用tab键补全,比较方便:
# coding:utf-8
# 首先请确保编译了caffe的python接口,以及编译后的输出目录<caffe_root>/python加载到了PYTHONPATH环境变量中. 或者,在代码中向os.path中添加
import caffe.proto.caffe_pb2 as caffe_pb2 # 载入caffe.proto编译生成的caffe_pb2文件
# 载入模型
caffemodel_filename = '/home/chris/py-faster-rcnn/imagenet_models/ZF.v2.caffemodel'
ZFmodel = caffe_pb2.NetParameter() # 为啥是NetParameter()而不是其他类,呃,目前也还没有搞清楚,这个是试验的
f = open(caffemodel_filename, 'rb')
ZFmodel.ParseFromString(f.read())
f.close()
# noob阶段,只知道print输出
print ZFmodel.name
print ZFmodel.input
阶段2:根据caffe.proto,读取caffemodel中的字段
这一阶段从caffemodel中读取出了大量信息。首先把caffemodel作为一个NetParameter类的对象看待,那么解析出它的名字(name)和各层(layer)。然后,解析每一层(layer)。如何确定layer表示所有层,能被遍历呢?需要参考caffe.proto文件,发现layer定义为:
repeated LayerParameter layer = 100;
看到repeated
关键字,可以确定layer是一个“数组”了。不断地、迭代第查看caffe.proto中的各个字段,就可以解析了。
能否从caffemodel文件中解析出信息并输出为网络训练的train.prototxt文件呢?:显然是可以的。这里以mnist训练10000次产生的caffemodel文件进行解析,将得到的信息拼接出网络训练所使用的lenet_train.prototxt
(输出到stdout)(代码实现比较naive,是逐个字段枚举的方式进行输出的,后续可以改进):
# coding:utf-8
# author:ChrisZZ
# description: 从caffemodel文件解析出网络训练信息,以类似train.prototxt的形式输出到屏幕
import _init_paths
import caffe.proto.caffe_pb2 as caffe_pb2
caffemodel_filename = '/home/chris/work/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/lenet_iter_10000.caffemodel'
model = caffe_pb2.NetParameter()
f=open(caffemodel_filename, 'rb')
model.ParseFromString(f.read())
f.close()
layers = model.layer
print 'name: "%s"'%model.name
layer_id=-1
for layer in layers:
layer_id = layer_id + 1
print 'layer {'
print ' name: "%s"'%layer.name
print ' type: "%s"'%layer.type
tops = layer.top
for top in tops:
print ' top: "%s"'%top
bottoms = layer.bottom
for bottom in bottoms:
print ' bottom: "%s"'%bottom
if len(layer.include)>0:
print ' include {'
includes = layer.include
phase_mapper={
'0': 'TRAIN',
'1': 'TEST'
}
for include in includes:
if include.phase is not None:
print ' phase: ', phase_mapper[str(include.phase)]
print ' }'
if layer.transform_param is not None and layer.transform_param.scale is not None and layer.transform_param.scale!=1:
print ' transform_param {'
print ' scale: %s'%layer.transform_param.scale
print ' }'
if layer.data_param is not None and (layer.data_param.source!="" or layer.data_param.batch_size!=0 or layer.data_param.backend!=0):
print ' data_param: {'
if layer.data_param.source is not None:
print ' source: "%s"'%layer.data_param.source
if layer.data_param.batch_size is not None:
print ' batch_size: %d'%layer.data_param.batch_size
if layer.data_param.backend is not None:
print ' backend: %s'%layer.data_param.backend
print ' }'
if layer.param is not None:
params = layer.param
for param in params:
print ' param {'
if param.lr_mult is not None:
print ' lr_mult: %s'% param.lr_mult
print ' }'
if layer.convolution_param is not None:
print ' convolution_param {'
conv_param = layer.convolution_param
if conv_param.num_output is not None:
print ' num_output: %d'%conv_param.num_output
if len(conv_param.kernel_size) > 0:
for kernel_size in conv_param.kernel_size:
print ' kernel_size: ',kernel_size
if len(conv_param.stride) > 0:
for stride in conv_param.stride:
print ' stride: ', stride
if conv_param.weight_filler is not None:
print ' weight_filler {'
print ' type: "%s"'%conv_param.weight_filler.type
print ' }'
if conv_param.bias_filler is not None:
print ' bias_filler {'
print ' type: "%s"'%conv_param.bias_filler.type
print ' }'
print ' }'
print '}'
产生的输出如下:
name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param: {
source: "examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: 1
}
convolution_param {
num_output: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv1"
type: "Convolution"
top: "conv1"
bottom: "data"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
top: "pool1"
bottom: "conv1"
convolution_param {
num_output: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "conv2"
type: "Convolution"
top: "conv2"
bottom: "pool1"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
top: "pool2"
bottom: "conv2"
convolution_param {
num_output: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip1"
type: "InnerProduct"
top: "ip1"
bottom: "pool2"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
convolution_param {
num_output: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
top: "ip1"
bottom: "ip1"
convolution_param {
num_output: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip2"
type: "InnerProduct"
top: "ip2"
bottom: "ip1"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
convolution_param {
num_output: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
top: "loss"
bottom: "ip2"
bottom: "label"
convolution_param {
num_output: 0
weight_filler {
type: "constant"
}
bias_filler {
type: "constant"
}
}
}
阶段3:读出caffemodel的所有字段
阶段2是手工指定要打印输出的字段,需要参照caffe.proto,一个个字段去找,遇到嵌套的情况需要递归查找,比较繁琐。能否一口气读出caffemodel的所有字段呢?可以的,使用__str__
就可以了,比如:
# coding:utf-8
import _init_paths
import caffe.proto.caffe_pb2 as caffe_pb2
caffemodel_filename = '/home/chris/work/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/lenet_iter_10000.caffemodel'
model = caffe_pb2.NetParameter()
f = open(caffemodel_filename, 'rb')
model.ParseFromString(f.read())
f.close()
print model.__str__
得到的输出几乎就是网络训练用的train.prototxt
了,只不过里面还把blobs
字段给打印出来了。这个字段里面有太多的内容,是经过多次迭代学习出来的卷积核以及bias的数值。这些字段应当忽略。以及,__str__
输出的首尾有不必要的字符串也要去掉,不妨将__str__
输出到文件,然后用sed删除不必要的内容。除了过滤掉blobs
字段包含的内容,还去掉了"phase: TRAIN"这个不必要显示的内容,处理完后再写回同一文件。代码如下(依然以lenet训练10000次的caffemodel为例):
# coding:utf-8
import _init_paths
import caffe.proto.caffe_pb2 as caffe_pb2
caffemodel_filename = '/home/chris/work/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/lenet_iter_10000.caffemodel'
model = caffe_pb2.NetParameter()
f = open(caffemodel_filename, 'rb')
model.ParseFromString(f.read())
f.close()
import sys
old=sys.stdout
save_filename = 'lenet_from_caffemodel.prototxt'
sys.stdout=open( save_filename, 'w')
print model.__str__
sys.stdout=old
f.close()
import os
cmd_1 = 'sed -i "1s/^.{38}//" ' + save_filename # 删除第一行前面38个字符
cmd_2 = "sed -i '$d' " + save_filename # 删除最后一行
os.system(cmd_1)
os.system(cmd_2)
# 打开刚刚存储的文件,输出里面的内容,输出时过滤掉“blobs”块和"phase: TRAIN"行。
f=open(save_filename, 'r')
lines = f.readlines()
f.close()
wr = open(save_filename, 'w')
now_have_blobs = False
nu = 1
for line in lines:
#print nu
nu = nu + 1
content = line.strip('
')
if (content == ' blobs {'):
now_have_blobs = True
elif (content == ' }' and now_have_blobs==True):
now_have_blobs = False
continue
if (content == ' phase: TRAIN'):
continue
if (now_have_blobs):
continue
else:
wr.write(content+'
')
wr.close()
现在,查看下得到的lenet_from_caffemodel.prototxt
文件内容,也就是从caffemodel文件解析出来的字段并过滤后的结果:
name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1.0
}
param {
lr_mult: 2.0
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
loss_weight: 1.0
}
可以说,得到的这个lenet_from_caffemodel.prototxt
就是用于网络训练的配置文件了。
这里其实还存在一个问题:caffemodel->str->文件,这个文件会比caffemodel大很多,因为各种blobs数据占据了太多空间。当把要解析的caffemodel从lenet_iter_10000.caffemodel
换成imagenet数据集上训练的ZFnet的权值文件ZF.v2.caffemodel
,这个文件本身就有200多M(lenet那个只有不到2M),再运行本阶段的python代码尝试得到网络结构,会报错提示说内存不足。看来,这个解析方法还需要改进。
阶段4:不完美的解析,但是肯定够用
既然阶段3的尝试失败,那就回到阶段2的方法,手动指定需要解析的字段,获取其内容,然后打印输出。对照着caffe.proto,把一些参数的默认值过滤掉,以及blobs过滤掉。
此处以比lenet5更复杂的ZFnet(论文:Visualizing and Understanding Convolutional Networks)来解析,因为在py-faster-rcnn中使用到了这个网络,而其配置文件中又增加了RPN和ROIPooling等层,想要知道到底增加了那些层以及换掉了哪些参数,不妨看看ZFnet的原版使用了哪些层:
# coding:utf-8
# author:ChrisZZ
# description: 从caffemodel文件解析出网络训练信息,以类似train.prototxt的形式输出到屏幕
import _init_paths
import caffe.proto.caffe_pb2 as caffe_pb2
#caffemodel_filename = '/home/chris/work/fuckubuntu/caffe-fast-rcnn/examples/mnist/lenet_iter_10000.caffemodel'
caffemodel_filename = '/home/chris/work/py-faster-rcnn/data/imagenet_models/ZF.v2.caffemodel'
model = caffe_pb2.NetParameter()
f=open(caffemodel_filename, 'rb')
model.ParseFromString(f.read())
f.close()
layers = model.layer
print 'name: ' + model.name
layer_id=-1
for layer in layers:
layer_id = layer_id + 1
res=list()
# name
res.append('layer {')
res.append(' name: "%s"' % layer.name)
# type
res.append(' type: "%s"' % layer.type)
# bottom
for bottom in layer.bottom:
res.append(' bottom: "%s"' % bottom)
# top
for top in layer.top:
res.append(' top: "%s"' % top)
# loss_weight
for loss_weight in layer.loss_weight:
res.append(' loss_weight: ' + loss_weight)
# param
for param in layer.param:
param_res = list()
if param.lr_mult is not None:
param_res.append(' lr_mult: %s' % param.lr_mult)
if param.decay_mult!=1:
param_res.append(' decay_mult: %s' % param.decay_mult)
if len(param_res)>0:
res.append(' param{')
res.extend(param_res)
res.append(' }')
# lrn_param
if layer.lrn_param is not None:
lrn_res = list()
if layer.lrn_param.local_size!=5:
lrn_res.append(' local_size: %d' % layer.lrn_param.local_size)
if layer.lrn_param.alpha!=1:
lrn_res.append(' alpha: %f' % layer.lrn_param.alpha)
if layer.lrn_param.beta!=0.75:
lrn_res.append(' beta: %f' % layer.lrn_param.beta)
NormRegionMapper={'0': 'ACROSS_CHANNELS', '1': 'WITHIN_CHANNEL'}
if layer.lrn_param.norm_region!=0:
lrn_res.append(' norm_region: %s' % NormRegionMapper[str(layer.lrn_param.norm_region)])
EngineMapper={'0': 'DEFAULT', '1':'CAFFE', '2':'CUDNN'}
if layer.lrn_param.engine!=0:
lrn_res.append(' engine: %s' % EngineMapper[str(layer.lrn_param.engine)])
if len(lrn_res)>0:
res.append(' lrn_param{')
res.extend(lrn_res)
res.append(' }')
# include
if len(layer.include)>0:
include_res = list()
includes = layer.include
phase_mapper={
'0': 'TRAIN',
'1': 'TEST'
}
for include in includes:
if include.phase is not None:
include_res.append(' phase: ', phase_mapper[str(include.phase)])
if len(include_res)>0:
res.append(' include {')
res.extend(include_res)
res.append(' }')
# transform_param
if layer.transform_param is not None:
transform_param_res = list()
if layer.transform_param.scale!=1:
transform_param_res.append(' scale: %s'%layer.transform_param.scale)
if layer.transform_param.mirror!=False:
transform_param.res.append(' mirror: ' + layer.transform_param.mirror)
if len(transform_param_res)>0:
res.append(' transform_param {')
res.extend(transform_param_res)
res.res.append(' }')
# data_param
if layer.data_param is not None and (layer.data_param.source!="" or layer.data_param.batch_size!=0 or layer.data_param.backend!=0):
data_param_res = list()
if layer.data_param.source is not None:
data_param_res.append(' source: "%s"'%layer.data_param.source)
if layer.data_param.batch_size is not None:
data_param_res.append(' batch_size: %d'%layer.data_param.batch_size)
if layer.data_param.backend is not None:
data_param_res.append(' backend: %s'%layer.data_param.backend)
if len(data_param_res)>0:
res.append(' data_param: {')
res.extend(data_param_res)
res.append(' }')
# convolution_param
if layer.convolution_param is not None:
convolution_param_res = list()
conv_param = layer.convolution_param
if conv_param.num_output!=0:
convolution_param_res.append(' num_output: %d'%conv_param.num_output)
if len(conv_param.kernel_size) > 0:
for kernel_size in conv_param.kernel_size:
convolution_param_res.append(' kernel_size: %d' % kernel_size)
if len(conv_param.pad) > 0:
for pad in conv_param.pad:
convolution_param_res.append(' pad: %d' % pad)
if len(conv_param.stride) > 0:
for stride in conv_param.stride:
convolution_param_res.append(' stride: %d' % stride)
if conv_param.weight_filler is not None and conv_param.weight_filler.type!='constant':
convolution_param_res.append(' weight_filler {')
convolution_param_res.append(' type: "%s"'%conv_param.weight_filler.type)
convolution_param_res.append(' }')
if conv_param.bias_filler is not None and conv_param.bias_filler.type!='constant':
convolution_param_res.append(' bias_filler {')
convolution_param_res.append(' type: "%s"'%conv_param.bias_filler.type)
convolution_param_res.append(' }')
if len(convolution_param_res)>0:
res.append(' convolution_param {')
res.extend(convolution_param_res)
res.append(' }')
# pooling_param
if layer.pooling_param is not None:
pooling_param_res = list()
if layer.pooling_param.kernel_size>0:
pooling_param_res.append(' kernel_size: %d' % layer.pooling_param.kernel_size)
pooling_param_res.append(' stride: %d' % layer.pooling_param.stride)
pooling_param_res.append(' pad: %d' % layer.pooling_param.pad)
PoolMethodMapper={'0':'MAX', '1':'AVE', '2':'STOCHASTIC'}
pooling_param_res.append(' pool: %s' % PoolMethodMapper[str(layer.pooling_param.pool)])
if len(pooling_param_res)>0:
res.append(' pooling_param {')
res.extend(pooling_param_res)
res.append(' }')
# inner_product_param
if layer.inner_product_param is not None:
inner_product_param_res = list()
if layer.inner_product_param.num_output!=0:
inner_product_param_res.append(' num_output: %d' % layer.inner_product_param.num_output)
if len(inner_product_param_res)>0:
res.append(' inner_product_param {')
res.extend(inner_product_param_res)
res.append(' }')
# drop_param
if layer.dropout_param is not None:
dropout_param_res = list()
if layer.dropout_param.dropout_ratio!=0.5 or layer.dropout_param.scale_train!=True:
dropout_param_res.append(' dropout_ratio: %f' % layer.dropout_param.dropout_ratio)
dropout_param_res.append(' scale_train: ' + str(layer.dropout_param.scale_train))
if len(dropout_param_res)>0:
res.append(' dropout_param {')
res.extend(dropout_param_res)
res.append(' }')
res.append('}')
for line in res:
print line