zoukankan      html  css  js  c++  java
  • 【Caffe学习】caffemodel与Protobuf

    Protobuf是什么

    Protobuf实际是一套类似Json或者XML的数据传输格式和规范,用于不同应用或进程之间进行通信时使用。通信时所传递的信息是通过Protobuf定义的message数据结构进行打包,然后编译成二进制的码流再进行传输或者存储。

    Protobuf的优点

    相比较而言,Protobuf有如下优点:

    • 足够简单
    • 序列化后体积很小:消息大小只需要XML的1/10 ~ 1/3
    • 解析速度快:解析速度比XML快20 ~ 100倍
    • 多语言支持
    • 更好的兼容性,Protobuf设计的一个原则就是要能够很好的支持向下或向上兼容

    使用protobuf的原由

    一个好的软件框架应该要有明确的输入和输出,对于CNN网络而言,其主要有两部分组成:网络具体结构和网络的具体优化算法及参数。对于框架的使用者而言,用户只需输入两个描述文件即可得到对该网络的优化结果,这无疑是非常方便的。

    caffe框架选择使用谷歌的开源protobuf工具对这两部分进行描述,解析和存储,这一部分为caffe的实现节省了大量的代码。

    如前面讲述的目标检测demo,py-faster-rcnn,其主要分为训练和测试两个过程,两个过程的核心文件都是prototxt格式的文本文件。
    如训练过程
    输入:
    (1)slover.prototxt。描述网络训练时的各种参数文件,如训练的策略,学习率的变化率,模型保存的频率等参数
    (2)train.prototxt。描述训练网络的网络结构文件。
    (3)test.prototxt。描述测试网络的网络结构文件。
    输出:
    VGG16.caffemodel:保存的训练好的网络参数文件。

    protobuf的使用流程

    protobuf工具主要是数据序列化存储和解析。在实际使用的时候主要是作为一个代码自动生成工具来使用,通过生成对所定义的数据结构的标准读写代码,用户可以通过标准的读写接口从文件中进行数据的读取,解析和存储。
    目前proto支持C++,python,java等语言,这里主要演示caffe中使用的C++调用。
    主要使用过程为:
    (1)编写XXX.proto文件。该文件里主要定义了各种数据结构及对应的数据类型,如int,string等。
    (2)使用protoc对XXX.proto文件进行编译,生成对应的数据结构文件的读取和写入程序,程序接口都是标准化的。生成的文件一般名为XXX.pb.cc和XXX.pb.h。
    (3)在新程序中使用XXX.pb.c和XXX.pb.h提供的代码。

    python读取caffemodel文件

    caffemodel是二进制的protobuf文件,利用protobuf的python接口可以读取它,解析出需要的内容

    不少算法都是用预训练模型在自己数据上微调,即加载“caffemodel”作为网络初始参数取值,然后在此基础上更新。使用方式往往是:同时给定solver的prototxt文件,以及caffemodel权值文件,然后从solver创建网络,并从caffemodel读取网络权值的初值。能否不加载solver的prototxt,只加载caffemodel并看看它里面都有什么东西?

    利用protobuf的python接口(C++接口也可以,不过编写代码和编译都略麻烦),能够读取caffemodel内容。教程当然是参考protobuf官网的例子了。

    阶段1:完全模仿protobuf官网例子

    我这里贴一个最noob的用法吧,用protobuf的python接口读取caffemodel文件。配合jupyter-notebook命令开启的jupyter笔记本,可以用tab键补全,比较方便:

    # coding:utf-8
    # 首先请确保编译了caffe的python接口,以及编译后的输出目录<caffe_root>/python加载到了PYTHONPATH环境变量中. 或者,在代码中向os.path中添加
    
    import caffe.proto.caffe_pb2 as caffe_pb2      # 载入caffe.proto编译生成的caffe_pb2文件
    
    # 载入模型
    caffemodel_filename = '/home/chris/py-faster-rcnn/imagenet_models/ZF.v2.caffemodel'
    ZFmodel = caffe_pb2.NetParameter()        # 为啥是NetParameter()而不是其他类,呃,目前也还没有搞清楚,这个是试验的
    f = open(caffemodel_filename, 'rb')
    ZFmodel.ParseFromString(f.read())
    f.close()
    
    # noob阶段,只知道print输出
    print ZFmodel.name    
    print ZFmodel.input
    

    阶段2:根据caffe.proto,读取caffemodel中的字段

    这一阶段从caffemodel中读取出了大量信息。首先把caffemodel作为一个NetParameter类的对象看待,那么解析出它的名字(name)和各层(layer)。然后,解析每一层(layer)。如何确定layer表示所有层,能被遍历呢?需要参考caffe.proto文件,发现layer定义为:

    repeated LayerParameter layer = 100;
    

    看到repeated关键字,可以确定layer是一个“数组”了。不断地、迭代第查看caffe.proto中的各个字段,就可以解析了。

    能否从caffemodel文件中解析出信息并输出为网络训练的train.prototxt文件呢?:显然是可以的。这里以mnist训练10000次产生的caffemodel文件进行解析,将得到的信息拼接出网络训练所使用的lenet_train.prototxt(输出到stdout)(代码实现比较naive,是逐个字段枚举的方式进行输出的,后续可以改进):

    # coding:utf-8
    # author:ChrisZZ
    # description: 从caffemodel文件解析出网络训练信息,以类似train.prototxt的形式输出到屏幕
    
    import _init_paths
    import caffe.proto.caffe_pb2 as caffe_pb2
    
    caffemodel_filename = '/home/chris/work/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/lenet_iter_10000.caffemodel'
    model = caffe_pb2.NetParameter()
    
    f=open(caffemodel_filename, 'rb')
    model.ParseFromString(f.read())
    f.close()
    
    layers = model.layer
    print 'name: "%s"'%model.name
    layer_id=-1
    for layer in layers:
        layer_id = layer_id + 1
        print 'layer {'
        print '  name: "%s"'%layer.name
        print '  type: "%s"'%layer.type
    
        
        tops = layer.top
        for top in tops:
            print '  top: "%s"'%top
        
        bottoms = layer.bottom
        for bottom in bottoms:
            print '  bottom: "%s"'%bottom
        
        if len(layer.include)>0:
            print '  include {'
            includes = layer.include
            phase_mapper={
                '0': 'TRAIN',
                '1': 'TEST'
            }
            
            for include in includes:
                if include.phase is not None:
                    print '    phase: ', phase_mapper[str(include.phase)]
            print '  }'
        
        if layer.transform_param is not None and layer.transform_param.scale is not None and layer.transform_param.scale!=1:
            print '  transform_param {'
            print '    scale: %s'%layer.transform_param.scale
            print '  }'
    
        if layer.data_param is not None and (layer.data_param.source!="" or layer.data_param.batch_size!=0 or layer.data_param.backend!=0):
            print '  data_param: {'
            if layer.data_param.source is not None:
                print '    source: "%s"'%layer.data_param.source
            if layer.data_param.batch_size is not None:
                print '    batch_size: %d'%layer.data_param.batch_size
            if layer.data_param.backend is not None:
                print '    backend: %s'%layer.data_param.backend
            print '  }'
            
        if layer.param is not None:
            params = layer.param
            for param in params:
                print '  param {'
                if param.lr_mult is not None:
                    print '    lr_mult: %s'% param.lr_mult
                print '  }'
        
        if layer.convolution_param is not None:
            print '  convolution_param {'
            conv_param = layer.convolution_param
            if conv_param.num_output is not None:
                print '    num_output: %d'%conv_param.num_output
            if len(conv_param.kernel_size) > 0:
                for kernel_size in conv_param.kernel_size:
                    print '    kernel_size: ',kernel_size
            if len(conv_param.stride) > 0:
                for stride in conv_param.stride:
                    print '    stride: ', stride
            if conv_param.weight_filler is not None:
                print '    weight_filler {'
                print '      type: "%s"'%conv_param.weight_filler.type
                print '    }'
            if conv_param.bias_filler is not None:
                print '    bias_filler {'
                print '      type: "%s"'%conv_param.bias_filler.type
                print '    }'
            print '  }'
        
        print '}'
    

    产生的输出如下:

    name: "LeNet"
    layer {
      name: "mnist"
      type: "Data"
      top: "data"
      top: "label"
      include {
        phase:  TRAIN
      }
      transform_param {
        scale: 0.00390625
      }
      data_param: {
        source: "examples/mnist/mnist_train_lmdb"
        batch_size: 64
        backend: 1
      }
      convolution_param {
        num_output: 0
        weight_filler {
          type: "constant"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "conv1"
      type: "Convolution"
      top: "conv1"
      bottom: "data"
      param {
        lr_mult: 1.0
      }
      param {
        lr_mult: 2.0
      }
      convolution_param {
        num_output: 20
        kernel_size:  5
        stride:  1
        weight_filler {
          type: "xavier"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "pool1"
      type: "Pooling"
      top: "pool1"
      bottom: "conv1"
      convolution_param {
        num_output: 0
        weight_filler {
          type: "constant"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "conv2"
      type: "Convolution"
      top: "conv2"
      bottom: "pool1"
      param {
        lr_mult: 1.0
      }
      param {
        lr_mult: 2.0
      }
      convolution_param {
        num_output: 50
        kernel_size:  5
        stride:  1
        weight_filler {
          type: "xavier"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "pool2"
      type: "Pooling"
      top: "pool2"
      bottom: "conv2"
      convolution_param {
        num_output: 0
        weight_filler {
          type: "constant"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "ip1"
      type: "InnerProduct"
      top: "ip1"
      bottom: "pool2"
      param {
        lr_mult: 1.0
      }
      param {
        lr_mult: 2.0
      }
      convolution_param {
        num_output: 0
        weight_filler {
          type: "constant"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "relu1"
      type: "ReLU"
      top: "ip1"
      bottom: "ip1"
      convolution_param {
        num_output: 0
        weight_filler {
          type: "constant"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "ip2"
      type: "InnerProduct"
      top: "ip2"
      bottom: "ip1"
      param {
        lr_mult: 1.0
      }
      param {
        lr_mult: 2.0
      }
      convolution_param {
        num_output: 0
        weight_filler {
          type: "constant"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "loss"
      type: "SoftmaxWithLoss"
      top: "loss"
      bottom: "ip2"
      bottom: "label"
      convolution_param {
        num_output: 0
        weight_filler {
          type: "constant"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    

    阶段3:读出caffemodel的所有字段

    阶段2是手工指定要打印输出的字段,需要参照caffe.proto,一个个字段去找,遇到嵌套的情况需要递归查找,比较繁琐。能否一口气读出caffemodel的所有字段呢?可以的,使用__str__就可以了,比如:

    # coding:utf-8
    
    import _init_paths
    import caffe.proto.caffe_pb2 as caffe_pb2
    
    caffemodel_filename = '/home/chris/work/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/lenet_iter_10000.caffemodel'
    
    model = caffe_pb2.NetParameter()
    
    f = open(caffemodel_filename, 'rb')
    model.ParseFromString(f.read())
    f.close()
    
    print model.__str__
    

    得到的输出几乎就是网络训练用的train.prototxt了,只不过里面还把blobs字段给打印出来了。这个字段里面有太多的内容,是经过多次迭代学习出来的卷积核以及bias的数值。这些字段应当忽略。以及,__str__输出的首尾有不必要的字符串也要去掉,不妨将__str__输出到文件,然后用sed删除不必要的内容。除了过滤掉blobs字段包含的内容,还去掉了"phase: TRAIN"这个不必要显示的内容,处理完后再写回同一文件。代码如下(依然以lenet训练10000次的caffemodel为例):

    # coding:utf-8
    
    import _init_paths
    import caffe.proto.caffe_pb2 as caffe_pb2
    
    caffemodel_filename = '/home/chris/work/py-faster-rcnn/caffe-fast-rcnn/examples/mnist/lenet_iter_10000.caffemodel'
    
    model = caffe_pb2.NetParameter()
    
    f = open(caffemodel_filename, 'rb')
    model.ParseFromString(f.read())
    f.close()
    
    import sys
    old=sys.stdout
    save_filename = 'lenet_from_caffemodel.prototxt' 
    sys.stdout=open( save_filename, 'w')
    print model.__str__
    sys.stdout=old
    f.close()
    
    import os
    cmd_1 = 'sed -i "1s/^.{38}//" ' + save_filename     # 删除第一行前面38个字符
    cmd_2 = "sed -i '$d' " + save_filename      # 删除最后一行
    os.system(cmd_1)
    os.system(cmd_2)
    
    # 打开刚刚存储的文件,输出里面的内容,输出时过滤掉“blobs”块和"phase: TRAIN"行。
    f=open(save_filename, 'r')
    lines = f.readlines()
    f.close()
    wr = open(save_filename, 'w')
    now_have_blobs = False
    nu = 1
    for line in lines:
        #print nu
        nu = nu + 1
        content = line.strip('
    ')
    
        if (content == '  blobs {'):
            now_have_blobs = True
        elif (content == '  }' and now_have_blobs==True):
            now_have_blobs = False
            continue
    
        if (content == '  phase: TRAIN'):
            continue
            
        if (now_have_blobs):
            continue
        else:
            wr.write(content+'
    ')
    wr.close()
    

    现在,查看下得到的lenet_from_caffemodel.prototxt文件内容,也就是从caffemodel文件解析出来的字段并过滤后的结果:

    name: "LeNet"
    layer {
      name: "mnist"
      type: "Data"
      top: "data"
      top: "label"
      include {
        phase: TRAIN
      }
      transform_param {
        scale: 0.00390625
      }
      data_param {
        source: "examples/mnist/mnist_train_lmdb"
        batch_size: 64
        backend: LMDB
      }
    }
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "data"
      top: "conv1"
      param {
        lr_mult: 1.0
      }
      param {
        lr_mult: 2.0
      }
      convolution_param {
        num_output: 20
        kernel_size: 5
        stride: 1
        weight_filler {
          type: "xavier"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "pool1"
      type: "Pooling"
      bottom: "conv1"
      top: "pool1"
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
    layer {
      name: "conv2"
      type: "Convolution"
      bottom: "pool1"
      top: "conv2"
      param {
        lr_mult: 1.0
      }
      param {
        lr_mult: 2.0
      }
      convolution_param {
        num_output: 50
        kernel_size: 5
        stride: 1
        weight_filler {
          type: "xavier"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "pool2"
      type: "Pooling"
      bottom: "conv2"
      top: "pool2"
      pooling_param {
        pool: MAX
        kernel_size: 2
        stride: 2
      }
    }
    layer {
      name: "ip1"
      type: "InnerProduct"
      bottom: "pool2"
      top: "ip1"
      param {
        lr_mult: 1.0
      }
      param {
        lr_mult: 2.0
      }
      inner_product_param {
        num_output: 500
        weight_filler {
          type: "xavier"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "relu1"
      type: "ReLU"
      bottom: "ip1"
      top: "ip1"
    }
    layer {
      name: "ip2"
      type: "InnerProduct"
      bottom: "ip1"
      top: "ip2"
      param {
        lr_mult: 1.0
      }
      param {
        lr_mult: 2.0
      }
      inner_product_param {
        num_output: 10
        weight_filler {
          type: "xavier"
        }
        bias_filler {
          type: "constant"
        }
      }
    }
    layer {
      name: "loss"
      type: "SoftmaxWithLoss"
      bottom: "ip2"
      bottom: "label"
      top: "loss"
      loss_weight: 1.0
    }
    

    可以说,得到的这个lenet_from_caffemodel.prototxt就是用于网络训练的配置文件了。
    这里其实还存在一个问题:caffemodel->str->文件,这个文件会比caffemodel大很多,因为各种blobs数据占据了太多空间。当把要解析的caffemodel从lenet_iter_10000.caffemodel换成imagenet数据集上训练的ZFnet的权值文件ZF.v2.caffemodel,这个文件本身就有200多M(lenet那个只有不到2M),再运行本阶段的python代码尝试得到网络结构,会报错提示说内存不足。看来,这个解析方法还需要改进。

    阶段4:不完美的解析,但是肯定够用

    既然阶段3的尝试失败,那就回到阶段2的方法,手动指定需要解析的字段,获取其内容,然后打印输出。对照着caffe.proto,把一些参数的默认值过滤掉,以及blobs过滤掉。
    此处以比lenet5更复杂的ZFnet(论文:Visualizing and Understanding Convolutional Networks)来解析,因为在py-faster-rcnn中使用到了这个网络,而其配置文件中又增加了RPN和ROIPooling等层,想要知道到底增加了那些层以及换掉了哪些参数,不妨看看ZFnet的原版使用了哪些层:

    # coding:utf-8
    # author:ChrisZZ
    # description: 从caffemodel文件解析出网络训练信息,以类似train.prototxt的形式输出到屏幕
    
    import _init_paths
    import caffe.proto.caffe_pb2 as caffe_pb2
    
    #caffemodel_filename = '/home/chris/work/fuckubuntu/caffe-fast-rcnn/examples/mnist/lenet_iter_10000.caffemodel'
    caffemodel_filename = '/home/chris/work/py-faster-rcnn/data/imagenet_models/ZF.v2.caffemodel'
        
    model = caffe_pb2.NetParameter()
    
    f=open(caffemodel_filename, 'rb')
    model.ParseFromString(f.read())
    f.close()
    
    layers = model.layer
    print 'name: ' + model.name
    layer_id=-1
    for layer in layers:
        layer_id = layer_id + 1
        
        res=list()
        
        # name
        res.append('layer {')
        res.append('  name: "%s"' % layer.name)
        
        # type
        res.append('  type: "%s"' % layer.type)
        
        
        # bottom
        for bottom in layer.bottom:
            res.append('  bottom: "%s"' % bottom)
        
        # top
        for top in layer.top:
            res.append('  top: "%s"' % top)
        
        # loss_weight
        for loss_weight in layer.loss_weight:
            res.append('  loss_weight: ' + loss_weight)
        
        # param
        for param in layer.param:
            param_res = list()
            if param.lr_mult is not None:
                param_res.append('    lr_mult: %s' % param.lr_mult)
            if param.decay_mult!=1:
                param_res.append('    decay_mult: %s' % param.decay_mult)
            if len(param_res)>0:
                res.append('  param{')
                res.extend(param_res)
                res.append('  }')
        
        # lrn_param
        if layer.lrn_param is not None:
            lrn_res = list()
            if layer.lrn_param.local_size!=5:
                lrn_res.append('    local_size: %d' % layer.lrn_param.local_size)
            if layer.lrn_param.alpha!=1:
                lrn_res.append('    alpha: %f' % layer.lrn_param.alpha)
            if layer.lrn_param.beta!=0.75:
                lrn_res.append('    beta: %f' % layer.lrn_param.beta)
            NormRegionMapper={'0': 'ACROSS_CHANNELS', '1': 'WITHIN_CHANNEL'}
            if layer.lrn_param.norm_region!=0:
                lrn_res.append('    norm_region: %s' % NormRegionMapper[str(layer.lrn_param.norm_region)])
            EngineMapper={'0': 'DEFAULT', '1':'CAFFE', '2':'CUDNN'}
            if layer.lrn_param.engine!=0:
                lrn_res.append('    engine: %s' % EngineMapper[str(layer.lrn_param.engine)])
            if len(lrn_res)>0:
                res.append('  lrn_param{')
                res.extend(lrn_res)
                res.append('  }')
        
        # include
        if len(layer.include)>0:
            include_res = list()
            includes = layer.include
            phase_mapper={
                '0': 'TRAIN',
                '1': 'TEST'
            }
            
            for include in includes:
                if include.phase is not None:
                    include_res.append('    phase: ', phase_mapper[str(include.phase)])
            
            if len(include_res)>0:
                res.append('  include {')
                res.extend(include_res)
                res.append('  }')
        
        # transform_param
        if layer.transform_param is not None:
            transform_param_res = list()
            if layer.transform_param.scale!=1:           
                transform_param_res.append('    scale: %s'%layer.transform_param.scale)
            if layer.transform_param.mirror!=False:
                transform_param.res.append('    mirror: ' + layer.transform_param.mirror)
            if len(transform_param_res)>0:
                res.append('  transform_param {')
                res.extend(transform_param_res)
                res.res.append('  }')
    
        # data_param
        if layer.data_param is not None and (layer.data_param.source!="" or layer.data_param.batch_size!=0 or layer.data_param.backend!=0):
            data_param_res = list()        
            if layer.data_param.source is not None:
                data_param_res.append('    source: "%s"'%layer.data_param.source)
            if layer.data_param.batch_size is not None:
                data_param_res.append('    batch_size: %d'%layer.data_param.batch_size)
            if layer.data_param.backend is not None:
                data_param_res.append('    backend: %s'%layer.data_param.backend)
            
            if len(data_param_res)>0:
                res.append('  data_param: {')
                res.extend(data_param_res)
                res.append('  }')
            
        # convolution_param
        if layer.convolution_param is not None:
            convolution_param_res = list()
            conv_param = layer.convolution_param
            if conv_param.num_output!=0:
                convolution_param_res.append('    num_output: %d'%conv_param.num_output)
            if len(conv_param.kernel_size) > 0:
                for kernel_size in conv_param.kernel_size:
                    convolution_param_res.append('    kernel_size: %d' % kernel_size)
            if len(conv_param.pad) > 0:
                for pad in conv_param.pad:
                    convolution_param_res.append('    pad: %d' % pad)
            if len(conv_param.stride) > 0:
                for stride in conv_param.stride:
                    convolution_param_res.append('    stride: %d' % stride)
            if conv_param.weight_filler is not None and conv_param.weight_filler.type!='constant':
                convolution_param_res.append('    weight_filler {')
                convolution_param_res.append('      type: "%s"'%conv_param.weight_filler.type)
                convolution_param_res.append('    }')
            if conv_param.bias_filler is not None and conv_param.bias_filler.type!='constant':
                convolution_param_res.append('    bias_filler {')
                convolution_param_res.append('      type: "%s"'%conv_param.bias_filler.type)
                convolution_param_res.append('    }')
            
            if len(convolution_param_res)>0:
                res.append('  convolution_param {')
                res.extend(convolution_param_res)
                res.append('  }')
        
        # pooling_param
        if layer.pooling_param is not None:
            pooling_param_res = list()
            if layer.pooling_param.kernel_size>0:
                pooling_param_res.append('    kernel_size: %d' % layer.pooling_param.kernel_size)
                pooling_param_res.append('    stride: %d' % layer.pooling_param.stride)
                pooling_param_res.append('    pad: %d' % layer.pooling_param.pad)
                PoolMethodMapper={'0':'MAX', '1':'AVE', '2':'STOCHASTIC'}
                pooling_param_res.append('    pool: %s' % PoolMethodMapper[str(layer.pooling_param.pool)])
            
            if len(pooling_param_res)>0:
                res.append('  pooling_param {')
                res.extend(pooling_param_res)
                res.append('  }')
        
        # inner_product_param
        if layer.inner_product_param is not None:
            inner_product_param_res = list()
            if layer.inner_product_param.num_output!=0:
                inner_product_param_res.append('    num_output: %d' % layer.inner_product_param.num_output)
            
            if len(inner_product_param_res)>0:
                res.append('  inner_product_param {')
                res.extend(inner_product_param_res)
                res.append('  }')
        
        # drop_param
        if layer.dropout_param is not None:
            dropout_param_res = list()
            if layer.dropout_param.dropout_ratio!=0.5 or layer.dropout_param.scale_train!=True:
                dropout_param_res.append('    dropout_ratio: %f' % layer.dropout_param.dropout_ratio)
                dropout_param_res.append('    scale_train: ' + str(layer.dropout_param.scale_train))
            
            if len(dropout_param_res)>0:
                res.append('  dropout_param {')
                res.extend(dropout_param_res)
                res.append('  }')
        
        res.append('}')
        
        for line in res:
            print line
    

    Reference

    [1] Google Protobuf简明教程

    [2] Caffe学习(十)protobuf及caffe.proto解析

    [3] python读取caffemodel文件

  • 相关阅读:
    拉格朗日乘数法
    线性判别分析(Linear Discriminant Analysis)
    有监督学习 和 无监督学习
    Jenkins入门知识
    vs技巧总结
    jenkins 神奇变量
    ubuntu12.04 折腾流水
    ubuntu 12.04 右上角的网络连接图标突然消失不见
    ubuntu 12.04 上网体验
    JIRA 初体验
  • 原文地址:https://www.cnblogs.com/Ryan0v0/p/12850399.html
Copyright © 2011-2022 走看看