zoukankan      html  css  js  c++  java
  • Hadoop- 流量汇总程序之如何实现hadoop的序列化接口及代码实现

    流量汇总程序需求

    统计每一个用户(手机号)锁耗费的总上行流量、下行流量、总流量。

    流程剖析

    阶段:map

    读取一行数据,切分字段,

    抽取手机号,上行流量,下行流量

    context.write(手机号,bean)

    阶段:reduce

    汇总遍历每个bean,将其中的上行流量,下行流量分别累加,得到一个新的bean

    context.write(手机号,新bean);

    代码实现

    1.定义一个phonebean:

    package com.Rz_Lee.hadoop.mr.flowsum;
    
    import org.apache.hadoop.io.Writable;
    
    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    
    /**
     * Created by Rz_Lee on 2017/8/15.
     */
    public class FlowBean implements Writable{
        private long upFlow;
        private long dFlow;
        private long sumFlow;
    
        //反序列化时,需要反射调用空参构造函数,所以要显示定义一个
        public FlowBean() {
        }
    
        public FlowBean(long upFlow, long dFlow) {
            this.upFlow = upFlow;
            this.dFlow = dFlow;
            this.sumFlow = dFlow+upFlow;
        }
    
        public long getUpFlow() {
            return upFlow;
        }
    
        public void setUpFlow(long upFlow) {
            this.upFlow = upFlow;
        }
    
        public long getdFlow() {
            return dFlow;
        }
    
        public void setdFlow(long dFlow) {
            this.dFlow = dFlow;
        }
    
        public long getSumFlow() {
            return sumFlow;
        }
    
        @Override
        public String toString() {
            return upFlow+"	"+dFlow+"	"+sumFlow;
        }
    
        /**
         * 序列化方法
         * @param dataOutput
         * @throws IOException
         */
        public void write(DataOutput dataOutput) throws IOException {
            dataOutput.writeLong(upFlow);
            dataOutput.writeLong(dFlow);
            dataOutput.writeLong(sumFlow);
        }
    
        /**
         * 反序列化方法
         * 注意:反序列化的顺序和序列化的顺序一致
         * @param dataInput
         * @throws IOException
         */
        public void readFields(DataInput dataInput) throws IOException {
            upFlow = dataInput.readLong();
            dFlow = dataInput.readLong();
            sumFlow = dataInput.readLong();
        }
    }
    

    2.实现类:

    package com.Rz_Lee.hadoop.mr.flowsum;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import java.io.IOException;
    
    /**
     * Created by Rz_Lee on 2017/8/15.
     */
    public class FlowCount {
        static class FlowCountMapper extends Mapper<LongWritable,Text,Text,FlowBean>{
            @Override
            protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
                //将一行内容转为String
                String line = value.toString();
                //切分字段
                String[] fields = line.split("	");
                //取出手机号
                String phoneNbr = fields[1];
                //取出上行和下行流量
                Long upFlow =Long.parseLong(fields[fields.length-3]);
                Long dFlow =Long.parseLong(fields[fields.length-2]);
                context.write(new Text(phoneNbr),new FlowBean(upFlow,dFlow));
            }
        }
    
        static class FlowCountReducer extends Reducer<Text,FlowBean,Text,FlowBean>
        {
            //<135,bean1><135,bean2><135,bean3>
            @Override
            protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
                long sum_upFlow = 0;
                long sum_dFlow = 0;
    
                //遍历所有Bean,将其中的上行流量,下行流量分别累加
                for(FlowBean bean:values){
                    sum_upFlow+=bean.getUpFlow();
                    sum_dFlow+=bean.getdFlow();
                }
                FlowBean resultBean = new FlowBean(sum_upFlow, sum_dFlow);
                context.write(key,resultBean);
            }
        }
    
        public static void main(String[] args) throws Exception{
            Configuration conf = new Configuration();
            Job job = Job.getInstance(conf);
            /*conf.set("mapreduce.framework.name","yarn");
            conf.set("yarn.resourcemanager.hostname","srv01");*/
    
            /*job.setJar("/usr/hadoop/wc.jar");*/
            //指定本程序的jar包所在的本地路径
            job.setJarByClass(FlowCount.class);
    
    
            //指定本业务job使用的mapper/reducer业务类
            job.setMapperClass(FlowCountMapper.class);
            job.setReducerClass(FlowCountReducer.class);
    
            //指定mapper输出数据的KV类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(FlowBean.class);
    
            //指定最终输出的数据的KV类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(FlowBean.class);
    
            //指定job的输入原始文件所在目录
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            //指定job的输出结果所在目录
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
    
            //将job中配置的相关参数,以及job所用的java类所在的jar包,提交给yarn去运行
            /*job.submit();*/
            boolean res = job.waitForCompletion(true);
            System.exit(res?0:1);
        }
    
    }

    3.数据来源phone.txt:

    1363157985123	13726232222	50-FD-07-A4-72-B8:CMCC	120.196.100.82  i.cnblogs.com		24  27	2586	24681	200
    1363157995456	13826547777	5C-0E-88-C7-F2-E0:CMCC	10.197.40.4			4	0	364	0	200
    1363157991789	13926438888	20-10-7A-28-CC-0A:CMCC	120.197.100.99			2	4	232	2151	200
    1363154400101	13926259999	CC-0E-8B-8B-B1-50:CMCC	120.196.40.4			4	0	440	0	200
    1363157993121	18211575555	94-17-AC-CD-E6-18:CMCC-EASY	120.196.100.99	www.bilibili.com	视频网站	20	15	8585	2106	200
    

    4.把Flowcount项目导成jar包,连同数据来源一起上传到HDFS,运行 hadoop jar wordcount.jar 包.类名 /源文件路径 /输出数据文件夹 

     

    打开浏览器输入:yarn节点的IP:8088 ,在网页上可以看见整个Job的运行情况。

     

  • 相关阅读:
    hdu1425
    iOS 纯代码跳转到Xib界面和Storyboard界面
    iOS 获取当前app的 App Store 版本号
    iOS 延时方法,定时器。等待一段时间在执行
    iOS获取当前app的名称和版本号及其他信息(持续维护)
    iOS 截取字符串(持续更新)截取、匹配、分隔
    iOS 屏幕大小尺寸,分辨率,代码获取屏幕大小(持续维护添加)
    iOS NSString只保留字符串中的数字
    iOS NSlog打印数据不完全,xcode处理办法
    iOS Xcode 10.3 xib:-1:未能找到或创建描述的执行上下文“<IBCocoaTouchPlatformToolDescript
  • 原文地址:https://www.cnblogs.com/RzCong/p/7365251.html
Copyright © 2011-2022 走看看