zoukankan      html  css  js  c++  java
  • Hadoop- MR的shuffle过程

    step1 input

    InputFormat读取数据,将数据转换成<key ,value>对,设置FileInputFormat,默认是文本格式(TextInputFormat)

    step2 map

    map<KEYIN, VALUEIN, KEYOUT, VALUEOUT> 默认情况下KEYIN:LongWritable,偏移量。VALUEIN:Text,KEYOUT与VALUEOUT要根据我们的具体的业务来定。

    step3 shuffle

    map输出到reduce之前这个阶段是mr的shuffle阶段。

    map输出的<key , value>对首先放在内存中,当达到一定的内存大小,就会溢写(spill)到本地磁盘中,可能有很多文件。spill过程有两个操作,分区(partition)和排序(sort)。当map task结束后可能有很多的小文件,spill。那么我们需要对这些文件合并(merge),排序成一个大文件。此时map阶段才结束。

    Reduce task 会到Map Task运行的机器上,拷贝要处理的数据。然后合并(merge),排序,分组(group)将相同key 的value 放在一起,完成了reduce 数据输入的过程。

    step4 reduce

    reduce<KEYIN, VALUEIN, KEYOUT, VALUEOUT>,map输出的<key , value>数据类型与reduce输入<key , value>的数据类型一致。

    接下来就是执行Reducer 定义的方法了

    step5 output

    TextOutputFormat

    最后将结果输出到文件系统上,每个< key , value >对, key与value中间分隔符为 ,默认调用 key 和 value 的 toString() 方法。

    我们可以在map端输出文件压缩,可设置,combiner(map端的reduce)。

  • 相关阅读:
    Java HashMap HashCode
    JS 笔记---持续更新
    彻底弄懂 JavaScript 执行机制
    几条jQuery代码片段助力Web开发效率提升
    原生JS与jQuery操作DOM对比
    jQuery->JavaScript一览表
    Jquery介绍
    canvas雪花
    canvas绘制多边形
    兼容性的事件处理程序
  • 原文地址:https://www.cnblogs.com/RzCong/p/7777463.html
Copyright © 2011-2022 走看看