zoukankan      html  css  js  c++  java
  • Python递归

    特殊的方法-循环:

    #无法解决某些情况,例如存在21元的零钱
    def fun(n):
        count = 0
        while n > 25:
            n = n - 25
            count = count + 1 
        while n > 10:
            n = n - 10
            count = count + 1 
        while n > 5:
            n = n - 10
            count = count + 1 
        while n > 0:
            n = n - 1
            count = count + 1  
        return count
    
    
    print(fun(63))
    

    特殊的方法 - 递归:

    def fun(n):  # 分好类
        if n <= 0:
            return 0
        elif n >= 25:
            return 1 + fun(n-25)
        elif n >= 10:
            return 1 + fun(n-10)
        elif n >= 5:
            return 1 + fun(n-5)
        elif n >= 1:
            return 1 + fun(n-1)
    
    
    print(fun(25))
    

    递归 + 记忆:

    import time
                                                                  
    def recMD(valueList, change, Knowlist):
        minNum = change
        if change in valueList:  # 可以作为结束条件
            Knowlist[change] = 1
            return 1
        elif Knowlist[change] > 0:  # 回忆
            return Knowlist[change]
        else:
            for i in [c for c in valueList if c <= change]:  # 常用
                num = 1 + recMD(valueList, change - i, Knowlist)
                if num < minNum:
                    minNum = num
            Knowlist[change] = minNum
        return minNum  # 最后记得要返回
    print(time.process_time())  # time.clock()被抛弃
    print(recMD([1, 5, 10, 25], 77, [0]*79))  # 创建全为0的表
    print(time.process_time())
    

    递归 + 记忆 + 输出过程:

    import time
    from pythonds.basic.stack import Stack 
    
    
    def dp(valueList, change, minNum, coinUsed):  # minNum初始化为0,之后需要利用到这些数据
        for cents in range(1, change+1):  # 从小到大递推
            coinCount = cents  # 初始化一个无害的最小值
            newCoin = 1
            for j in [c for c in valueList if c <= cents]:  # 常用技巧
                if 1 + minNum[cents-j] < coinCount:
                    coinCount = 1 + minNum[cents - j]
                    newCoin = j
            minNum[cents] = coinCount
            coinUsed[cents] = newCoin # 每一个change的最优解都是由两部分组成,这里是记录其中一部分
        return minNum[change]
    
    
    def printSelection(change, coinused):
        coin = change
        s = Stack()
        while coin > 0:
            thisCoin = coinused[coin]
            s.push(thisCoin)
            coin = coin - thisCoin
        
        while not s.isEmpty():
            print(s.pop())
    
    
    valList = [1, 5, 10, 25]
    amnt = 63
    minN = [0]*64
    coinUsed = [0]*64
    print(dp(valList, amnt, minN, coinUsed))  # 创建表的方式get
    print(coinUsed[1:])  # 打印全部
    printSelection(amnt, coinUsed)  # 打印组成部分
    

    备注:

    动态规划解法的必要条件:问题的最有解包含了更小规模的最优解,即每一步都要依靠前面某步的最优解
    Talk is cheap. Show me the code. 将算法思路转化成具体代码需要不断实践,积累经验

  • 相关阅读:
    装箱,拆箱
    service 入门
    反射的文章
    二叉树的先序遍历,中序遍历,后续遍历 (文章)
    QTP里的DOM应用
    QTP对Excel的操作(EOM)
    QTP实用小技巧(1)
    QTP环境变量的动态生成与加载(深入篇)
    自动化测试基础
    QTP正则表达式
  • 原文地址:https://www.cnblogs.com/SKEZhi/p/13361464.html
Copyright © 2011-2022 走看看