zoukankan      html  css  js  c++  java
  • 【ybtoj高效进阶 21277】逆序对数(数学)(DP)

    逆序对数

    题目链接:ybtoj高效进阶 21277

    题目大意

    问你有多少个长度为 n 的排列的逆序对个数是 n。

    思路

    你考虑不断加入越来越大的数,那每次给逆序对个数的贡献区间就是 (0sim i-1)
    总的来讲,每次贡献的上界是 (1,2,..,n-1)

    然后 DP 当然会超时,考虑小小容斥一下。
    考虑到要的个数和是 (n),相对 (n(n+1)/2) 很小,考虑从这里下手。
    (f_{i,j}) 为有至少 (i) 个超过限制,当前的和是 (j) 的方案数。

    那不难想到答案就是容斥一下,如果 (i) 是奇数对答案的贡献就是负的,否则是正的。
    那当然这个是排好序的,剩下的部分没有排序,我们就直接暴力出来 (n-i) 个位置。
    根据插板法:(C^{n-1}_{(n-1)+n-1})
    考虑每次新放一个数,放不超过限制的还是超过限制的。

    然后你考虑怎么一搞:把所有数都加一个,然后再前面放 (1) 或者 (2)
    那每次增加的就是 (i) 或者 (i+1)
    而且从 (i,j),不超过限制就是转移到 (i,j+i),超过限制就是转移到 (i+1,j+i+1)

    然后搞一搞即可。

    代码

    #include<cstdio>
    #define ll long long
    #define mo 1000000007
    
    using namespace std;
    
    int n;
    ll f[501][100001], jc[200001], inv[200001];
    ll get_c[100001], ans;
    
    ll ksm(ll x, ll y) {
    	ll re = 1;
    	while (y) {
    		if (y & 1) re = re * x % mo;
    		x = x * x % mo;
    		y >>= 1;
    	}
    	return re;
    }
    
    ll C(int x, int y) {
    	if (x < y) return 0;
    	return jc[x] * inv[y] % mo * inv[x - y] % mo;
    }
    
    int main() {
    //	freopen("pairs.in", "r", stdin);
    //	freopen("pairs.out", "w", stdout);
    	
    	scanf("%d", &n);
    	
    	jc[0] = 1;//预处理
    	for (int i = 1; i <= 2 * n; i++) jc[i] = jc[i - 1] * i % mo;
    	inv[2 * n] = ksm(jc[2 * n], mo - 2);
    	for (int i = 2 * n - 1; i >= 0; i--)
    		inv[i] = inv[i + 1] * (i + 1) % mo; 
    	
    	for (int i = 0; i <= n; i++)
    		get_c[i] = C(i + n - 1, n - 1);
    	
    	ans = get_c[n];
    	f[1][1] = 1;
    	for (int j = 1; j * (j + 1) / 2 <= n; j++)//DP
    		for (int i = 1; i <= n; i++) {
    			if (j & 1) ans = (ans + mo - f[j][i] * get_c[n - i] % mo) % mo; 
    				else ans = (ans + f[j][i] * get_c[n - i] % mo) % mo;
    			if (i + j <= n) f[j][i + j] = (f[j][i + j] + f[j][i]) % mo;
    			if (i + j < n) f[j + 1][i + j + 1] = (f[j + 1][i + j + 1] + f[j][i]) % mo;
    		}
    	
    	printf("%lld", ans);
    	
    	return 0;
    }
    
  • 相关阅读:
    bzoj 2259 [Oibh]新型计算机 ——最短路(建图)
    bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数
    NOIp2018 D2T3 defense——树上倍增
    bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
    洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆
    bzoj 3625(CF 438E)The Child and Binary Tree——多项式开方
    洛谷 P3377 模板左偏树
    CF 1016 C —— 思路
    洛谷 P3806 点分治模板
    洛谷 P4149 [ IOI 2011 ] Race —— 点分治
  • 原文地址:https://www.cnblogs.com/Sakura-TJH/p/YBTOJ_GXJJ_21277.html
Copyright © 2011-2022 走看看