zoukankan      html  css  js  c++  java
  • 软工终结日报-paddle图像数据预处理 6/1

    今天为了配合目标检测算法的特殊需要,我们要进行同样特殊的图像预处理

    之前的预测是将图像转化为对应的rgb值,而今天这个在那之前需要一个图像拆分的过程

    # coding=utf-8
    import random
    
    
    class sampler():
        def __init__(self, max_sample, max_trial, min_scale, max_scale,
                     min_aspect_ratio, max_aspect_ratio, min_jaccard_overlap,
                     max_jaccard_overlap):
            # 最多样本量
            self.max_sample = max_sample
            # 最多实验量
            self.max_trial = max_trial
            # 最小规模
            self.min_scale = min_scale
            # 最大规模
            self.max_scale = max_scale
            # 最小的纵横比
            self.min_aspect_ratio = min_aspect_ratio
            # 最大的纵横比
            self.max_aspect_ratio = max_aspect_ratio
            # 最小重叠部分
            self.min_jaccard_overlap = min_jaccard_overlap
            # 最大重叠部分
            self.max_jaccard_overlap = max_jaccard_overlap
    
    
    class bbox():
        # 定义目标框的大小
        def __init__(self, xmin, ymin, xmax, ymax):
            self.xmin = xmin
            self.ymin = ymin
            self.xmax = xmax
            self.ymax = ymax
    
    
    def bbox_area(src_bbox):
        # 计算目标框的面积
        width = src_bbox.xmax - src_bbox.xmin
        height = src_bbox.ymax - src_bbox.ymin
        return width * height
    
    
    def generate_sample(sampler):
        scale = random.uniform(sampler.min_scale, sampler.max_scale)
        min_aspect_ratio = max(sampler.min_aspect_ratio, (scale**2.0))
        max_aspect_ratio = min(sampler.max_aspect_ratio, 1 / (scale**2.0))
        aspect_ratio = random.uniform(min_aspect_ratio, max_aspect_ratio)
        bbox_width = scale * (aspect_ratio**0.5)
        bbox_height = scale / (aspect_ratio**0.5)
        xmin_bound = 1 - bbox_width
        ymin_bound = 1 - bbox_height
        xmin = random.uniform(0, xmin_bound)
        ymin = random.uniform(0, ymin_bound)
        xmax = xmin + bbox_width
        ymax = ymin + bbox_height
        sampled_bbox = bbox(xmin, ymin, xmax, ymax)
        return sampled_bbox
    
    
    def jaccard_overlap(sample_bbox, object_bbox):
        if sample_bbox.xmin >= object_bbox.xmax or 
                sample_bbox.xmax <= object_bbox.xmin or 
                sample_bbox.ymin >= object_bbox.ymax or 
                sample_bbox.ymax <= object_bbox.ymin:
            return 0
        intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin)
        intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin)
        intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax)
        intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax)
        intersect_size = (intersect_xmax - intersect_xmin) * (
            intersect_ymax - intersect_ymin)
        sample_bbox_size = bbox_area(sample_bbox)
        object_bbox_size = bbox_area(object_bbox)
        overlap = intersect_size / (
            sample_bbox_size + object_bbox_size - intersect_size)
        return overlap
    
    
    def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
        '''
        满足样品的约束
        :param sampler:
        :param sample_bbox:
        :param bbox_labels:
        :return:
        '''
        if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0:
            return True
        for i in range(len(bbox_labels)):
            object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                               bbox_labels[i][3], bbox_labels[i][4])
            overlap = jaccard_overlap(sample_bbox, object_bbox)
            if sampler.min_jaccard_overlap != 0 and 
                    overlap < sampler.min_jaccard_overlap:
                continue
            if sampler.max_jaccard_overlap != 0 and 
                    overlap > sampler.max_jaccard_overlap:
                continue
            return True
        return False
    
    
    def generate_batch_samples(batch_sampler, bbox_labels):
        '''
        按照一个batch生成一个样本
        :param batch_sampler:
        :param bbox_labels:
        :return:
        '''
        sampled_bbox = []
        index = []
        c = 0
        for sampler in batch_sampler:
            found = 0
            # 获取最大的样本量
            for i in range(sampler.max_trial):
                if found >= sampler.max_sample:
                    break
                sample_bbox = generate_sample(sampler)
                if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                    sampled_bbox.append(sample_bbox)
                    found = found + 1
                    index.append(c)
            c = c + 1
        return sampled_bbox
    
    
    def clip_bbox(src_bbox):
        # 修剪目标框的大小
        src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0)
        src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0)
        src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0)
        src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0)
        return src_bbox
    
    
    def meet_emit_constraint(src_bbox, sample_bbox):
        center_x = (src_bbox.xmax + src_bbox.xmin) / 2
        center_y = (src_bbox.ymax + src_bbox.ymin) / 2
        if center_x >= sample_bbox.xmin and 
            center_x <= sample_bbox.xmax and 
            center_y >= sample_bbox.ymin and 
            center_y <= sample_bbox.ymax:
            return True
        return False
    
    
    def transform_labels(bbox_labels, sample_bbox):
        proj_bbox = bbox(0, 0, 0, 0)
        sample_labels = []
        for i in range(len(bbox_labels)):
            sample_label = []
            object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                               bbox_labels[i][3], bbox_labels[i][4])
            if not meet_emit_constraint(object_bbox, sample_bbox):
                continue
            sample_width = sample_bbox.xmax - sample_bbox.xmin
            sample_height = sample_bbox.ymax - sample_bbox.ymin
            proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width
            proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height
            proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width
            proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height
            proj_bbox = clip_bbox(proj_bbox)
            if bbox_area(proj_bbox) > 0:
                sample_label.append(bbox_labels[i][0])
                sample_label.append(float(proj_bbox.xmin))
                sample_label.append(float(proj_bbox.ymin))
                sample_label.append(float(proj_bbox.xmax))
                sample_label.append(float(proj_bbox.ymax))
                sample_label.append(bbox_labels[i][5])
                sample_labels.append(sample_label)
        return sample_labels
    
    
    def crop_image(img, bbox_labels, sample_bbox, image_width, image_height):
        '''
        裁剪图像
        :param img: 图像
        :param bbox_labels: 所有的标注信息
        :param sample_bbox: 对应一个的标注信息
        :param image_ 图像原始的宽
        :param image_height: 图像原始的高
        :return:裁剪好的图像和其对应的标注信息
        '''
        sample_bbox = clip_bbox(sample_bbox)
        xmin = int(sample_bbox.xmin * image_width)
        xmax = int(sample_bbox.xmax * image_width)
        ymin = int(sample_bbox.ymin * image_height)
        ymax = int(sample_bbox.ymax * image_height)
        sample_img = img[ymin:ymax, xmin:xmax]
        sample_labels = transform_labels(bbox_labels, sample_bbox)
        return sample_img, sample_labels
  • 相关阅读:
    tf.nn.embedding_lookup函数的用法
    windows+python3.6下安装fasttext+fasttext在win上的使用+gensim(fasttext)
    阅读关于DuReader:百度大规模的中文机器阅读理解数据集
    End to End Sequence Labeling via Bidirectional LSTM-CNNs-CRF论文小结
    《Applying Deep Learning to Answer Selection: A Study And an Open Task》文章理解小结
    Windows下基于python3使用word2vec训练中文维基百科语料(三)
    Windows下基于python3使用word2vec训练中文维基百科语料(二)
    Java并发编程:CountDownLatch、CyclicBarrier和 Semaphore
    cpu满问题分析
    Zookeeper用来干什么?
  • 原文地址:https://www.cnblogs.com/Sakuraba/p/14911851.html
Copyright © 2011-2022 走看看