zoukankan      html  css  js  c++  java
  • AC 自动机

    概述

    AC 自动机是 以 Trie 的结构为基础 ,结合 KMP 的思想 建立的。

    简单来说,建立一个 AC 自动机有两个步骤:

    1. 基础的 Trie 结构:将所有的模式串构成一棵 Trie。
    2. KMP 的思想:对 Trie 树上所有的结点构造失配指针。

    然后就可以利用它进行多模式匹配了。

    字典树构建

    AC 自动机在初始时会将若干个模式串丢到一个 Trie 里,然后在 Trie 上建立 AC 自动机。这个 Trie 就是普通的 Trie,该怎么建怎么建。

    这里需要仔细解释一下 Trie 的结点的含义,尽管这很小儿科,但在之后的理解中极其重要。Trie 中的结点表示的是某个模式串的前缀。我们在后文也将其称作状态。一个结点表示一个状态,Trie 的边就是状态的转移。

    形式化地说,对于若干个模式串 (s_1,s_2dots s_n) ,将它们构建一棵字典树后的所有状态的集合记作 (Q)

    失配指针

    AC 自动机利用一个 fail 指针来辅助多模式串的匹配。

    状态 (u) 的 fail 指针指向另一个状态 (v) ,其中 (vin Q) ,且 (v)(u) 的最长后缀(即在若干个后缀状态中取最长的一个作为 fail 指针)。对于学过 KMP 的朋友,我在这里简单对比一下这里的 fail 指针与 KMP 中的 next 指针:

    1. 共同点:两者同样是在失配的时候用于跳转的指针。
    2. 不同点:next 指针求的是最长 Border(即最长的相同前后缀),而 fail 指针指向所有模式串的前缀中匹配当前状态的最长后缀。

    因为 KMP 只对一个模式串做匹配,而 AC 自动机要对多个模式串做匹配。有可能 fail 指针指向的结点对应着另一个模式串,两者前缀不同。

    没看懂上面的对比不要急(也许我的脑回路和泥萌不一样是吧),你只需要知道,AC 自动机的失配指针指向当前状态的最长后缀状态即可。

    AC 自动机在做匹配时,同一位上可匹配多个模式串。

    构建指针

    下面介绍构建 fail 指针的 基础思想 :(强调!基础思想!基础!)

    构建 fail 指针,可以参考 KMP 中构造 Next 指针的思想。

    考虑字典树中当前的结点 (u)(u) 的父结点是 (p)(p) 通过字符 c 的边指向 (u) ,即 (trie[p,c]=u) 。假设深度小于 (u) 的所有结点的 fail 指针都已求得。

    1. 如果 ( ext{trie}[ ext{fail}[p],c]) 存在:则让 u 的 fail 指针指向 ( ext{trie}[ ext{fail}[p],c]) 。相当于在 (p)( ext{fail}[p]) 后面加一个字符 c ,分别对应 (u)(fail[u])
    2. 如果 ( ext{trie}[ ext{fail}[p],c]) 不存在:那么我们继续找到 ( ext{trie}[ ext{fail}[ ext{fail}[p]],c]) 。重复 1 的判断过程,一直跳 fail 指针直到根结点。
    3. 如果真的没有,就让 fail 指针指向根结点。

    如此即完成了 ( ext{fail}[u]) 的构建。

    例子

    下面放一张 GIF 帮助大家理解。对字符串 i he his she hers 组成的字典树构建 fail 指针:

    1. 黄色结点:当前的结点 (u)
    2. 绿色结点:表示已经 BFS 遍历完毕的结点,
    3. 橙色的边:fail 指针。
    4. 红色的边:当前求出的 fail 指针。

    AC_automation_gif_b_3.gif

    我们重点分析结点 6 的 fail 指针构建:

    AC_automation_6_9.png

    找到 6 的父结点 5, ( ext{fail}[5]=10) 。然而 10 结点没有字母 s 连出的边;继续跳到 10 的 fail 指针, ( ext{fail}[10]=0) 。发现 0 结点有字母 s 连出的边,指向 7 结点;所以 ( ext{fail}[6]=7) 。最后放一张建出来的图

    finish

    字典树与字典图

    我们直接上代码吧。字典树插入的代码就不分析了(后面完整代码里有),先来看构建函数 build() ,该函数的目标有两个,一个是构建 fail 指针,一个是构建自动机。参数如下:

    1. tr[u,c] :有两种理解方式。我们可以简单理解为字典树上的一条边,即 ( ext{trie}[u,c]) ;也可以理解为从状态(结点) (u) 后加一个字符 c 到达的状态(结点),即一个状态转移函数 ( ext{trans}(u,c)) 。下文中我们将用第二种理解方式继续讲解。
    2. 队列 q :用于 BFS 遍历字典树。
    3. fail[u] :结点 (u) 的 fail 指针。
    void build() {
      for (int i = 0; i < 26; i++)
        if (tr[0][i]) q.push(tr[0][i]);
      while (q.size()) {
        int u = q.front();
        q.pop();
        for (int i = 0; i < 26; i++) {
          if (tr[u][i])
            fail[tr[u][i]] = tr[fail[u]][i], q.push(tr[u][i]);
          else
            tr[u][i] = tr[fail[u]][i];
        }
      }
    }
    

    解释一下上面的代码:build 函数将结点按 BFS 顺序入队,依次求 fail 指针。这里的字典树根结点为 0,我们将根结点的子结点一一入队。若将根结点入队,则在第一次 BFS 的时候,会将根结点儿子的 fail 指针标记为本身。因此我们将根结点的儿子一一入队,而不是将根结点入队。

    然后开始 BFS:每次取出队首的结点 u( ( ext{fail}[u]) 在之前的 BFS 过程中已求得),然后遍历字符集(这里是 0-25,对应 a-z,即 (u) 的各个子节点):

    1. 如果 ( ext{trans}[u][i]) 存在,我们就将 ( ext{trans}[u][i]) 的 fail 指针赋值为 ( ext{trans}[ ext{fail}[u]][i]) 。这里似乎有一个问题。根据之前的讲解,我们应该用 while 循环,不停的跳 fail 指针,判断是否存在字符 i 对应的结点,然后赋值,但是这里通过特殊处理简化了这些代码。
    2. 否则,令 ( ext{trans}[u][i]) 指向 ( ext{trans}[ ext{fail}[u]][i]) 的状态。

    这里的处理是,通过 else 语句的代码修改字典树的结构。没错,它将不存在的字典树的状态链接到了失配指针的对应状态。在原字典树中,每一个结点代表一个字符串 (S) ,是某个模式串的前缀。而在修改字典树结构后,尽管增加了许多转移关系,但结点(状态)所代表的字符串是不变的。

    ( ext{trans}[S][c]) 相当于是在 (S) 后添加一个字符 c 变成另一个状态 (S') 。如果 (S') 存在,说明存在一个模式串的前缀是 (S') ,否则我们让 ( ext{trans}[S][c]) 指向 ( ext{trans}[ ext{fail}[S]][c]) 。由于 ( ext{fail}[S]) 对应的字符串是 (S) 的后缀,因此 ( ext{trans}[ ext{fail}[S]][c]) 对应的字符串也是 (S') 的后缀。

    换言之在 Trie 上跳转的时侯,我们只会从 (S) 跳转到 (S') ,相当于匹配了一个 (S') ;但在 AC 自动机上跳转的时侯,我们会从 (S) 跳转到 (S') 的后缀,也就是说我们匹配一个字符 c ,然后舍弃 (S) 的部分前缀。舍弃前缀显然是能匹配的。那么 fail 指针呢?它也是在舍弃前缀啊!试想一下,如果文本串能匹配 (S) ,显然它也能匹配 (S) 的后缀。所谓的 fail 指针其实就是 (S) 的一个后缀集合。

    tr 数组还有另一种比较简单的理解方式:如果在位置 (u) 失配,我们会跳转到 ( ext{fail}[u]) 的位置。所以我们可能沿着 fail 数组跳转多次才能来到下一个能匹配的位置。所以我们可以用 tr 数组直接记录记录下一个能匹配的位置,这样就能节省下很多时间。

    这样修改字典树的结构,使得匹配转移更加完善。同时它将 fail 指针跳转的路径做了压缩(就像并查集的路径压缩),使得本来需要跳很多次 fail 指针变成跳一次。

    好的,我知道大家都受不了长篇叙述。上图!我们将之前的 GIF 图改一下:

    AC_automation_gif_b_pro3.gif

    1. 蓝色结点:BFS 遍历到的结点 u
    2. 蓝色的边:当前结点下,AC 自动机修改字典树结构连出的边。
    3. 黑色的边:AC 自动机修改字典树结构连出的边。
    4. 红色的边:当前结点求出的 fail 指针
    5. 黄色的边:fail 指针
    6. 灰色的边:字典树的边

    可以发现,众多交错的黑色边将字典树变成了 字典图 。图中省 s 略了连向根结点的黑边(否则会更乱)。我们重点分析一下结点 5 遍历时的情况。我们求 ( ext{trans}[5][s]=6) 的 fail 指针:

    AC_automation_b_7.png

    本来的策略是找 fail 指针,于是我们跳到 ( ext{fail}[5]=10) 发现没有 s 连出的字典树的边,于是跳到 ( ext{fail}[10]=0) ,发现有 ( ext{trie}[0][s]=7) ,于是 ( ext{fail}[6]=7) ;但是有了黑边、蓝边,我们跳到 ( ext{fail}[5]=10) 之后直接走 ( ext{trans}[10][s]=7) 就走到 (7) 号结点了。

    这就是 build 完成的两件事:构建 fail 指针和建立字典图。这个字典图也会在查询的时候起到关键作用。

    多模式匹配

    接下来分析匹配函数 query()

    int query(char *t) {
      int u = 0, res = 0;
      for (int i = 1; t[i]; i++) {
        u = tr[u][t[i] - 'a'];  // 转移
        for (int j = u; j && e[j] != -1; j = fail[j]) {
          res += e[j], e[j] = -1;
        }
      }
      return res;
    }
    

    这里 (u) 作为字典树上当前匹配到的结点, res 即返回的答案。循环遍历匹配串, (u) 在字典树上跟踪当前字符。利用 fail 指针找出所有匹配的模式串,累加到答案中。然后清零。对 (e[j]) 取反的操作用来判断 (e[j]) 是否等于 -1。在上文中我们分析过,字典树的结构其实就是一个 trans 函数,而构建好这个函数后,在匹配字符串的过程中,我们会舍弃部分前缀达到最低限度的匹配。fail 指针则指向了更多的匹配状态。最后上一份图。对于刚才的自动机:

    AC_automation_b_13.png

    我们从根结点开始尝试匹配 ushersheishis ,那么 (p) 的变化将是:

    AC_automation_gif_c.gif

    1. 红色结点: (p) 结点
    2. 粉色箭头: (p) 在自动机上的跳转,
    3. 蓝色的边:成功匹配的模式串
    4. 蓝色结点:示跳 fail 指针时的结点(状态)。

    总结

    希望大家看懂了文章。

    时间复杂度:定义 (|s_i|) 是模板串的长度, (|S|) 是文本串的长度, (|Sigma|) 是字符集的大小(常数,一般为 26)。如果连了 trie 图,时间复杂度就是 (O(sum|s_i|+n|Sigma|+|S|)) ,其中 (n) 是 AC 自动机中结点的数目,并且最大可以达到 (O(sum|s_i|)) 。如果不连 trie 图,并且在构建 fail 指针的时候避免遍历到空儿子,时间复杂度就是 (O(sum|s_i|+|S|))

    例题

    Luogu-P3808【模板】AC 自动机(简单版)

    #include<bits/stdc++.h>
    using namespace std;
    const int N=1e6+6;
    int n;
    int tr[N][26],tot,e[N],fail[N];
    void insert(char *s) {
    	int u=0;
    	for(int i=1; s[i]; i++) {
    		if(!tr[u][s[i]-'a']) {
    			tr[u][s[i]-'a']=++tot;
    		}
    		u=tr[u][s[i]-'a'];
    	}
    	e[u]++;
    }
    void build() {
    	queue<int> q;
    	for(int i=0; i<26; i++) {
    		if(tr[0][i]) {
    			q.push(tr[0][i]);
    		}
    	}
    	while(q.size()) {
    		int u=q.front();
    		q.pop();
    		for(int i=0; i<26; i++) {
    			if(tr[u][i]) {
    				fail[tr[u][i]]=tr[fail[u]][i],q.push(tr[u][i]);
    			} else {
    				tr[u][i]=tr[fail[u]][i];
    			}
    		}
    	}
    }
    int query(char *s) {
    	int u=0,res=0;
    	for(int i=1; s[i]; i++) {
    		u=tr[u][s[i]-'a'];
    		for(int j=u; j&&e[j]^-1; j=fail[j]) {
    			res+=e[j],e[j]=-1;
    		}
    	}
    	return res;
    }
    char s[N];
    int main() {
    	scanf("%d",&n);
    	for(int i=1; i<=n; i++) {
    		scanf("%s",s+1),insert(s);
    	}
    	build(),scanf("%s",s+1),printf("%d",query(s));
    	return 0;
    }
    

    后记

    由 OI-wiki 搬运

  • 相关阅读:
    Django——froms渲染错误信息,参数配置,局部钩子和全局钩子
    Django——forms组件(form校验字段功能,渲染模板功能)
    Django——完美的分页器
    delphi 判断目录是否存在
    UniGUI学习之UniMemo行距控制(41)
    UniGUI学习之UniDBComboBox怎么实现“模糊查询?(40)
    Javaday13(基础数据结构)
    Javaday12(Lambda,枚举,异常,断言)
    Javaday11(final、static、内部类)
    javaday10(类与类的关系、访问修饰符、抽象和接口)
  • 原文地址:https://www.cnblogs.com/Sam2007/p/13692796.html
Copyright © 2011-2022 走看看