【题目分析】
判断有多少个长度不小于k的相同子串的数目。
N^2显然是可以做到的。
其实可以维护一个关于height的单调栈,统计一下贡献,就可以了。
其实还是挺难写的OTZ。
【代码】
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <map>
#include <set>
#include <queue>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 300005
#define LL long long
#define inf 0x3f3f3f3f
#define F(i,j,k) for (LL i=j;i<=k;++i)
#define D(i,j,k) for (LL i=j;i>=k;--i)
void Finout()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("wa.txt","w",stdout);
#endif
}
LL Getint()
{
LL x=0,f=1; char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
char ss[maxn];
LL n,l1,l2,k;
struct SuffixArray{
LL s[maxn];
LL rk[maxn],h[maxn],cnt[maxn],tmp[maxn],sa[maxn];
void init()
{
memset(s,0,sizeof s);
// memset(rk,0,sizeof rk);
// memset(h,0,sizeof h);
// memset(cnt,0,sizeof cnt);
// memset(tmp,0,sizeof tmp);
// memset(sa,0,sizeof sa);
}
void build(LL n,LL m)
{
LL i,j,k; n++;
F(i,0,2*n+5) rk[i]=h[i]=tmp[i]=sa[i]=0;
F(i,0,m-1) cnt[i]=0;
F(i,0,n-1) cnt[rk[i]=s[i]]++;
F(i,1,m-1) cnt[i]+=cnt[i-1];
F(i,0,n-1) sa[--cnt[rk[i]]]=i;
for (k=1;k<=n;k<<=1)
{
F(i,0,n-1)
{
j=sa[i]-k;
if (j<0) j+=n;
tmp[cnt[rk[j]]++]=j;
}
sa[tmp[cnt[0]=0]]=j=0;
F(i,1,n-1)
{
if (rk[tmp[i]]!=rk[tmp[i-1]]||rk[tmp[i]+k]!=rk[tmp[i-1]+k]) cnt[++j]=i;
sa[tmp[i]]=j;
}
memcpy(rk,sa,n*sizeof(LL));
memcpy(sa,tmp,n*sizeof(LL));
if (j>=n-1) break;
}
for (j=rk[h[i=k=0]=0];i<n-1;++i,++k)
while (~k&&s[i]!=s[sa[j-1]+k]) h[j]=k--,j=rk[sa[j]+1];
//Debug
/*
F(i,0,n-1) cout<<s[i]<<" "; cout<<endl;
F(i,0,n-1) cout<<sa[i]<<" ";cout<<endl;
F(i,0,n-1) cout<<h[i]<<" ";cout<<endl;
*/
//Debug over
}
LL sta[maxn][2],top;
LL tot,sum;
void solve(LL n,LL k)
{
// n++;
top=0;sum=0;tot=0;
F(i,1,n)
{
if (h[i]<k) top=tot=0;
else
{
LL cnt=0;
if (sa[i-1]<l1) cnt++,tot+=h[i]-k+1;
while (top>0&&h[i]<=sta[top-1][0])
{
top--;
tot-=sta[top][1]*(sta[top][0]-h[i]);
cnt+=sta[top][1];
}
sta[top][0]=h[i]; sta[top++][1]=cnt;
if (sa[i]>l1) sum+=tot;
}
}
top=tot=0;
F(i,1,n)
{
if (h[i]<k) top=tot=0;
else
{
LL cnt=0;
if (sa[i-1]>l1) cnt++,tot+=h[i]-k+1;
while (top>0&&h[i]<=sta[top-1][0])
{
top--;
tot-=sta[top][1]*(sta[top][0]-h[i]);
cnt+=sta[top][1];
}
sta[top][0]=h[i]; sta[top++][1]=cnt;
if (sa[i]<l1) sum+=tot;
}
}
cout<<sum<<endl;
}
}arr;
int main()
{
Finout();
while (scanf("%lld",&k)!=EOF&&k)
{
arr.init();
memset(ss,0,sizeof ss);
scanf("%s",ss);l1=strlen(ss);//cout<<l1<<endl;
F(i,0,l1-1) arr.s[i]=ss[i];
arr.s[l1]=248;
memset(ss,0,sizeof ss);
scanf("%s",ss);l2=strlen(ss);//cout<<l2<<endl;
F(i,0,l2-1) arr.s[l1+i+1]=ss[i];
arr.build(l1+l2+1,250);
arr.solve(l1+l2+1,k);
}
}