求$sum_{i=1}^nsum_{j=1}^n lcm(i,j)$
枚举因数
$ans=sum_{d<=n} F(d) * d$
$F(d)$表示给定范围内两两$sum_{gcd(i,j)=d} i*j $
令$f(p)=Sum(lfloor n/p floor) Sum(lfloor m/p floor) * p^2$
那么 $f(i)=sum_{i mid n}F(n)$
反演得到$F(i)=sum_{i mid n} mu(n/i) f(n)$
那么我们代入就得到了
$ans=sum_{d<=n}d*sum_{i<=lfloor n/d floor} i^2 *mu(i)* Sum(lfloor frac {n}{i*d} floor,lfloor frac {m}{i*d} floor)$
然后外面分块一次,里面分块一次
时间复杂度$Theta (n)$
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) #define ll long long #define inv 10050505LL #define maxn 10000005 #define md 20101009LL int mu[maxn],pr[maxn],top=0; ll ps[maxn]; bool vis[maxn]; int n,m; void init() { memset(vis,false,sizeof vis); mu[1]=1;ps[1]=1; F(i,2,n) { if (!vis[i]) mu[i]=-1,pr[++top]=i; F(j,1,top) { if (pr[j]*i>n) break; vis[pr[j]*i]=true; if (i%pr[j]==0) {mu[i*pr[j]]=0;break;} mu[i*pr[j]]=-mu[i]; } ps[i]=(ps[i-1]+((ll)mu[i]*i*i))%md; } } ll sum(int n,int m) { n=((ll)n*(n+1)/2)%md; m=((ll)m*(m+1)/2)%md; return ((ll)n*m)%md; } ll Function(int n,int m) { if (n>m) swap(n,m); ll ret=0; for (int i=1,last=0;i<=n;i=last+1) { last=min(n/(n/i),m/(m/i)); ret=(ret+((sum(n/i,m/i))*(ps[last]-ps[i-1]+md)%md)%md)%md; } return ret; } ll S(int n) { return ((1LL+n)*n/2)%md; } ll solve(int n,int m) { if (n>m) swap(n,m); ll ret=0; for (int i=1,last=0;i<=n;i=last+1) { last=min(n/(n/i),m/(m/i)); ret=(ret+((ll)Function(n/i,m/i))*(S(last)-S(i-1))%md+md)%md; } return ret; } int main() { scanf("%d%d",&n,&m); if (n<m) swap(n,m); init(); printf("%lld ",solve(n,m)); }