求$sum_{i=1}^nsum_{j=1}^n lcm(i,j)$
枚举因数
$ans=sum_{d<=n} F(d) * d$
$F(d)$表示给定范围内两两$sum_{gcd(i,j)=d} i*j $
令$f(p)=Sum(lfloor n/p floor) Sum(lfloor m/p floor) * p^2$
那么 $f(i)=sum_{i mid n}F(n)$
反演得到$F(i)=sum_{i mid n} mu(n/i) f(n)$
那么我们代入就得到了
$ans=sum_{d<=n}d*sum_{i<=lfloor n/d floor} i^2 *mu(i)* Sum(lfloor frac {n}{i*d} floor,lfloor frac {m}{i*d} floor)$
然后外面分块一次,里面分块一次
时间复杂度$Theta (n)$
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define inv 10050505LL
#define maxn 10000005
#define md 20101009LL
int mu[maxn],pr[maxn],top=0;
ll ps[maxn];
bool vis[maxn];
int n,m;
void init()
{
memset(vis,false,sizeof vis);
mu[1]=1;ps[1]=1;
F(i,2,n)
{
if (!vis[i]) mu[i]=-1,pr[++top]=i;
F(j,1,top)
{
if (pr[j]*i>n) break;
vis[pr[j]*i]=true;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
ps[i]=(ps[i-1]+((ll)mu[i]*i*i))%md;
}
}
ll sum(int n,int m)
{
n=((ll)n*(n+1)/2)%md;
m=((ll)m*(m+1)/2)%md;
return ((ll)n*m)%md;
}
ll Function(int n,int m)
{
if (n>m) swap(n,m);
ll ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret=(ret+((sum(n/i,m/i))*(ps[last]-ps[i-1]+md)%md)%md)%md;
}
return ret;
}
ll S(int n)
{
return ((1LL+n)*n/2)%md;
}
ll solve(int n,int m)
{
if (n>m) swap(n,m);
ll ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret=(ret+((ll)Function(n/i,m/i))*(S(last)-S(i-1))%md+md)%md;
}
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
if (n<m) swap(n,m);
init();
printf("%lld
",solve(n,m));
}