zoukankan      html  css  js  c++  java
  • POJ——T1679 The Unique MST

    http://poj.org/problem?id=1679

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 30120   Accepted: 10778

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    

    Source

     
     
    蒟蒻就是弱、、、
     1 #include <algorithm>
     2 #include <cstdio>
     3 
     4 using namespace std;
     5 
     6 const int N(10001);
     7 int num,n,m;
     8 int fa[N],cnt;
     9 int Fir,MST;
    10 int u,v,w,used[N];
    11 struct Edge
    12 {
    13     int u,v,w;
    14 } edge[N<<1];
    15 
    16 bool cmp(Edge a,Edge b)
    17 {
    18     return a.w<b.w;
    19 }
    20 
    21 int find(int x)
    22 {
    23     return fa[x]==x?x:fa[x]=find(fa[x]);
    24 }
    25 
    26 int Kruskal()
    27 {
    28     int ans=0; cnt=0;
    29     sort(edge+1,edge+m+1,cmp);
    30     for(int i=1; i<=n; i++) fa[i]=i;
    31     for(int i=1; i<=m; i++)
    32     {
    33         int fx=find(edge[i].u),fy=find(edge[i].v);
    34         if(fx!=fy)
    35         {
    36             fa[fx]=fy;
    37             used[++cnt]=i;
    38             ans+=edge[i].w;
    39         }
    40         if(cnt==n-1) return ans;
    41     }
    42     return ans;
    43 }
    44 
    45 int SecKru(int cant)
    46 {
    47     int ans=0; cnt=0;
    48     for(int i=1;i<=n;i++) fa[i]=i;
    49     for(int i=1;i<=m;i++) 
    50     {
    51         if(cant==i) continue;
    52         int fx=find(edge[i].u),fy=find(edge[i].v);
    53         if(fx!=fy)
    54         {
    55             cnt++;
    56             fa[fx]=fy;
    57             ans+=edge[i].w;
    58         }
    59         if(cnt==n-1) return ans;
    60     }
    61     return 0x7fffffff;
    62 }
    63 
    64 int main() 
    65 {
    66     scanf("%d",&num);
    67     for(;num--;)
    68     {
    69         scanf("%d%d",&n,&m);
    70         for(int i=1;i<=m;i++) 
    71             scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
    72         Fir=Kruskal(); MST=0x7fffffff;
    73         for(int i=1;i<n;i++)
    74         {
    75             MST=min(SecKru(used[i]),MST);
    76         }
    77         if(Fir==MST)
    78               printf("Not Unique!
    ");
    79         else  printf("%d
    ",Fir);
    80     }
    81     return 0;
    82 }
    ——每当你想要放弃的时候,就想想是为了什么才一路坚持到现在。
  • 相关阅读:
    Python全栈开发之---mysql数据库
    python爬虫项目(scrapy-redis分布式爬取房天下租房信息)
    python多线程爬虫+批量下载斗图啦图片项目(关注、持续更新)
    python爬虫+数据可视化项目(关注、持续更新)
    超融合基本架构简单定义
    开启新生之路,,,学习网络
    Redhat7.2 ----team网卡绑定
    设计原则
    java应用程序的运行机制
    java三大版本和核心优势
  • 原文地址:https://www.cnblogs.com/Shy-key/p/6821073.html
Copyright © 2011-2022 走看看