zoukankan      html  css  js  c++  java
  • HUD——T 3836 Equivalent Sets

    http://acm.hdu.edu.cn/showproblem.php?pid=3836

    Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Others)
    Total Submission(s): 4802    Accepted Submission(s): 1725


    Problem Description
    To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
    You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
    Now you want to know the minimum steps needed to get the problem proved.
     
    Input
    The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
    Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
     
    Output
    For each case, output a single integer: the minimum steps needed.
     
    Sample Input
    4 0 3 2 1 2 1 3
     
    Sample Output
    4 2
    Hint
    Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
     
    Source
     
    Recommend
    xubiao   |   We have carefully selected several similar problems for you:  3835 3828 3834 3830 3829 
     
     
    题意:求最少连几条边可以使整个图成为强连通图
    可以先将图缩点,然后统计新图中入读==0,和出度==0 的点的个数,因为使加边最少,
    所以应该是先给出度==0的点连一条向入读==0的点得边,然后再加上多余的(入读==0||出度==0)的点
    ans=max(入读==0的点数,出读==0的点数)
     1 #include <algorithm>
     2 #include <cstring>
     3 #include <cstdio>
     4 
     5 using namespace std;
     6 
     7 const int N(20000+5);
     8 const int M(50000+5);
     9 int n,m;
    10 
    11 int head[N],sumedge;
    12 struct Edge
    13 {
    14     int v,next;
    15     Edge(int v=0,int next=0):v(v),next(next){} 
    16 }edge[M];
    17 inline void ins(int u,int v)
    18 {
    19     edge[++sumedge]=Edge(v,head[u]);
    20     head[u]=sumedge;
    21 }
    22 
    23 int tim,dfn[N],low[N];
    24 int top,Stack[N],instack[N];
    25 int sumcol,col[N];
    26 void DFS(int now)
    27 {
    28     dfn[now]=low[now]=++tim;
    29     Stack[++top]=now; instack[now]=1;
    30     for(int i=head[now];i;i=edge[i].next)
    31     {
    32         int v=edge[i].v;
    33         if(!dfn[v])  DFS(v),low[now]=min(low[now],low[v]);
    34         else if(instack[v]) low[now]=min(low[now],dfn[v]);
    35     }
    36     if(dfn[now]==low[now])
    37     {
    38         col[now]=++sumcol;
    39         for(;Stack[top]!=now;top--)
    40         {
    41             col[Stack[top]]=sumcol;
    42             instack[Stack[top]]=0;
    43         }
    44         instack[now]=0; top--;
    45     }
    46 }
    47 
    48 int ans,ans1,ans2,rd[N],cd[N];
    49 inline void init()
    50 {
    51     top=ans=ans1=ans2=tim=sumcol=sumedge=0;
    52     memset(rd,0,sizeof(rd));
    53     memset(cd,0,sizeof(cd));
    54     memset(low,0,sizeof(low));
    55     memset(dfn,0,sizeof(dfn));
    56     memset(head,0,sizeof(head));
    57     memset(Stack,0,sizeof(Stack));
    58     memset(instack,0,sizeof(instack));
    59 }
    60 
    61 int main()
    62 {
    63     for(;~scanf("%d%d",&n,&m);init())
    64     {
    65         for(int u,v,i=1;i<=m;i++)
    66             scanf("%d%d",&u,&v),ins(u,v);
    67         for(int i=1;i<=n;i++)
    68             if(!dfn[i]) DFS(i);
    69         for(int u=1;u<=n;u++)
    70             for(int i=head[u];i;i=edge[i].next)
    71             {
    72                 int v=edge[i].v;
    73                 if(col[u]==col[v]) continue;
    74                 rd[col[v]]++; cd[col[u]]++;
    75             }
    76         for(int i=1;i<=sumcol;i++)
    77         {
    78             if(!cd[i]) ans1++;
    79             if(!rd[i]) ans2++;
    80         }
    81         ans=max(ans1,ans2);
    82         if(sumcol==1) ans=0;
    83         printf("%d
    ",ans);
    84     }
    85     return 0;
    86 }
    ——每当你想要放弃的时候,就想想是为了什么才一路坚持到现在。
  • 相关阅读:
    hadoop分布式搭建
    朴素贝叶斯算法
    python数组并集交集补集
    VMware Workstation下安装Linux
    决策树ID3算法
    微信小程序开发测试
    筛法求素数质数
    STL——heap结构及算法
    STL——序列式容器
    使用位图字体工具BMFont从图片生成自定义字体
  • 原文地址:https://www.cnblogs.com/Shy-key/p/7380720.html
Copyright © 2011-2022 走看看