应该是求定积分的 但是还没研究很透怎么用定积分实现 就找了一个公式
s = -(y2-y1)/pow(x2-x1, 2)*pow(x3-x2, 3)/6
以下是Discuss中的详细分析:
设直线方程:y=kx+t…………………………………………………………(1) 抛物线方程:y=ax^2+bx+c……………………………………………………(2) 已知抛物线顶点p1(x1,y1),两线交点p2(x2,y2)和p3(x3,y3) 斜率k=(y3-y2)/(x3-x2)……………………………………………………(3) 把p3点代入(1)式结合(3)式可得:t=y3-(k*x3) 又因为p1是抛物线的顶点,可得关系:x1=-b/2a即b=-2a*x1………………(4) 把p1点代入(2)式结合(4)式可得:a*x1*x1-2a*x1*x1+c=y1化简得c=y1+a*x1*x1……(5) 把p2点代入(2)式结合(4)式和(5)式可得:a=(y2-y1)/((x1-x2)*(x1-x2)) 于是通过3点求出了k,t,a,b,c即两个方程式已求出 题目时求面积s 通过积分可知:s=f(x2->x3)(积分符号)(ax^2+bx+c-(kx+t)) =f(x2->x3)(积分符号)(ax^2+(b-k)x+c-t) =[a/3*x^3+(b-k)/2*x^2+(c-t)x](x2->x3) =a/3*x3*x3*x3+(b-k)/2*x3*x3+(c-t)*x3-(a/3*x2*x2*x2+(b-k)/2*x2*x2+(c-t)*x2) 化简得: 面积公式:s=-(y2-y1)/((x2-x1)*(x2-x1))*((x3-x2)*(x3-x2)*(x3-x2))/6;
1 # include <stdio.h> 2 # include <math.h> 3 typedef long long LL; 4 5 void run() 6 { 7 double x1, x2, x3, y1, y2, y3; 8 double area; 9 int p; 10 scanf("%d", &p); 11 while(p--) 12 { 13 scanf("%lf%lf%lf%lf%lf%lf", &x1, &y1, &x2, &y2, &x3, &y3); 14 double k, b, a; 15 double s = -(y2-y1)/pow(x2-x1, 2)*pow(x3-x2, 3)/6; 16 printf("%.2lf ", s); 17 } 18 } 19 20 int main(void) 21 { 22 run(); 23 24 return 0; 25 }