zoukankan      html  css  js  c++  java
  • POJ2560 Freckles

    Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu

    Description

    In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad's back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley's engagement falls through. 
    Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle.

    Input

    The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.

    Output

    Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.

    Sample Input

    3
    1.0 1.0
    2.0 2.0
    2.0 4.0
    

    Sample Output

    3.41
    

    Source

     
    最小生成树。注意double
     
     1 /*by SilverN*/
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<cstring>
     5 #include<cstdio>
     6 #include<cmath>
     7 using namespace std;
     8 int read(){
     9     int x=0,f=1;char ch=getchar();
    10     while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    11     while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    12     return x*f;
    13 }
    14 const int mxn=120;
    15 int n;
    16 struct point{
    17     double x;double y;
    18 }p[mxn];
    19 double dist(point a,point b){
    20     return sqrt( (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y) );
    21 }
    22 struct edge{
    23     int x,y;
    24     double dis;
    25 }e[mxn*mxn];int cnt=0;
    26 int cmp(edge a,edge b){
    27     return a.dis<b.dis;
    28 }
    29 int fa[mxn];
    30 void init(){
    31     for(int i=1;i<=n;i++)fa[i]=i;
    32 }
    33 int find(int x){
    34     if(fa[x]==x)return x;
    35     return fa[x]=find(fa[x]);
    36 }
    37 double ans=0;
    38 void Kruskal(){
    39     int i,j;
    40     int ti=0;
    41     ans=0;
    42     for(i=1;i<=cnt;i++){
    43         int u=find(e[i].x),v=find(e[i].y);
    44         if(u==v)continue;
    45         ti++;
    46         ans+=e[i].dis;
    47         fa[u]=v;
    48         if(ti==n-1)break;
    49     }
    50     return;
    51 }
    52 int main(){
    53     int i,j;
    54     while(scanf("%d",&n)!=EOF){
    55         init();
    56         cnt=0;
    57         int u,v,dis;int m;
    58         int i,j;
    59         for(i=1;i<=n;i++){
    60             scanf("%lf%lf",&p[i].x,&p[i].y);
    61         }
    62         for(i=1;i<n;i++)
    63             for(j=i+1;j<=n;j++){
    64                 e[++cnt]=(edge){i,j,dist(p[i],p[j])};
    65             }
    66         sort(e+1,e+cnt+1,cmp);
    67         Kruskal();
    68         printf("%.2f
    ",ans);
    69     }
    70     return 0;
    71 }
  • 相关阅读:
    Quartz2.0以上版本的单机和集群
    Mysql的Haproxy反向代理和负载均衡
    spring AOP原理解析
    Restful接口调用方法超详细总结
    mysql数据库主从同步
    数据备份的OSS接口
    读取properties配置文件的方法
    算法学习——堆排序(二叉树排序)
    回溯算法的实现
    冒泡排序
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/5891016.html
Copyright © 2011-2022 走看看