zoukankan      html  css  js  c++  java
  • POJ2954 Triangle

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 5869   Accepted: 2524

    Description

    lattice point is an ordered pair (xy) where x and y are both integers. Given the coordinates of the vertices of a triangle (which happen to be lattice points), you are to count the number of lattice points which lie completely inside of the triangle (points on the edges or vertices of the triangle do not count).

    Input

    The input test file will contain multiple test cases. Each input test case consists of six integers x1y1x2y2x3, and y3, where (x1y1), (x2y2), and (x3y3) are the coordinates of vertices of the triangle. All triangles in the input will be non-degenerate (will have positive area), and −15000 ≤ x1y1x2y2x3y3 ≤ 15000. The end-of-file is marked by a test case with x1 =  y1 = x2 = y2 = x3 = y3 = 0 and should not be processed.

    Output

    For each input case, the program should print the number of internal lattice points on a single line.

    Sample Input

    0 0 1 0 0 1
    0 0 5 0 0 5
    0 0 0 0 0 0

    Sample Output

    0
    6

    Source

    给定三个点的坐标,问三个点连成的三角形中,包含了多少整坐标点

    数学问题 计算几何? pick定理

    pick定理:设平面直角坐标系中,一个三角形内部有a个整坐标点,它的三条边共经过了b个整坐标点,那么三角形面积S=a + b/2 +1

    把公式变形一下,用海伦公式或者叉积求出S,就能算出a了

     1 /*by SilverN*/
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<cstring>
     5 #include<cstdio>
     6 #include<cmath>
     7 using namespace std;
     8 int read(){
     9     int x=0,f=1;char ch=getchar();
    10     while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    11     while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    12     return x*f;
    13 }
    14 struct point{
    15     int x,y;
    16     point operator - (point rhs)const{
    17         return (point){x-rhs.x,y-rhs.y};
    18     }
    19     int cross(point rhs){return x*rhs.y-y*rhs.x;}
    20 }p[4];
    21 inline int abs(int x){return x<0?-x:x;}
    22 int gcd(int a,int b){return (!b)?a:gcd(b,a%b);}
    23 int area(point a,point b,point c){
    24     return abs((c-a).cross(b-a));
    25 }
    26 int side(){
    27     p[0]=p[3];int res=0;
    28     for(int i=1;i<=3;i++){
    29         res+=gcd(abs(p[i].x-p[i-1].x),abs(p[i].y-p[i-1].y));
    30     }
    31     return res;
    32 }
    33 int main(){
    34     int i,j;
    35     while(scanf("%d%d%d%d%d%d",&p[1].x,&p[1].y,&p[2].x,&p[2].y,&p[3].x,&p[3].y)!=EOF){
    36         if(!p[1].x && !p[2].x && !p[3].x && !p[1].y && !p[2].y && !p[3].y)break;
    37         int ans=area(p[1],p[2],p[3])+2-side();
    38         printf("%d
    ",ans/2);
    39     }
    40     return 0;
    41 }
  • 相关阅读:
    浅谈Linux的内存管理机制
    [SCM]源码管理 perforce状态的检测
    轻松构建Mysql高可用集群系统
    [BuildRelease].NET代码静态检测FxCop
    Ant高级task
    Jenkins master在windows上安装
    Jenkins的Windows Slave的配置
    Jenkins的配置
    [BuildRelease]跨平台build脚本
    使用Synergy多台电脑共享键盘鼠标和剪贴板
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/6480864.html
Copyright © 2011-2022 走看看