zoukankan      html  css  js  c++  java
  • HDU 5877 Weak Pair(弱点对)

    HDU 5877 Weak Pair(弱点对)

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)

    Description

    题目描述

    You are given a rooted tree of N nodes, labeled from 1 to N. To the ith node a non-negative value ai is assigned. An ordered pair of nodes (u,v) is said to be weak if

      (1) u is an ancestor of v (Note: In this problem a node u is not considered an ancestor of itself);

      (2) au × av ≤ k.

    Can you find the number of weak pairs in the tree?

    给你有N个节点的有根树,编号从1到N。第i个节点会被分配一个非负数ai。一个满足如下条件的有序点对(u, v)则被认为是弱点对

      (1)uv的先祖节点(注意:这个问题中u不能为自身的先祖节点)。

      (2) au X av k

     

    你能找出这棵树里有多少弱点对吗?

     

    Input

    输入

    There are multiple cases in the data set.

      The first line of input contains an integer T denoting number of test cases.

      For each case, the first line contains two space-separated integers, N and k, respectively.

      The second line contains N space-separated integers, denoting a1 to aN.

      Each of the subsequent lines contains two space-separated integers defining an edge connecting nodes u and v , where node u is the parent of node v.

     

      Constrains:

      

      1≤N≤105 

      

      0≤ai≤109 

      

      0≤k≤1018 

    多组测试用例。

      输入的第一行有一个整数T表示测试用例的数量。

      对于每个测试用例,第一行有两个用空格分隔的整数,Nk

      第二行有N个用空格分隔的整数,表示a1aN

      随后每(N-1)行有两个用空格分隔的数uv表示连接两节点的一条边,其中uv的父节点。

     

      范围如下:

      

      1≤N≤105 

      

      0≤ai≤109 

      

      0≤k≤1018 

     

    Output

    输出

    For each test case, print a single integer on a single line denoting the number of weak pairs in the tree.

    对于每个测试用例,输出一个表示树中弱点对数量的整数在单独一行。

     

    Sample Input - 输入样例

    Sample Output - 输出样例

    1
    2 3
    1 2
    1 2

    1

     

    【题解】

    DFS + 离散化线段树

    DFS从上往下(从根往叶子)添加与释放节点进线段树,利用线段树查找符合的区间中元素数量。

    因为单个数的值比较大,但是总数比较少,线段树还算可以接受。根据总数进行离散化,其实就是排个序+map。出于想用upper_bound的强迫症没有把k/ai的结果一并加入离散化(注意0),不然代码量应该更少。

     

    【代码 C++

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <map>
     5 #define LL __int64
     6 #define mx 100005
     7 std::map<LL, int> mp;
     8 LL data[mx], dMP[mx], opt, k;
     9 int n;
    10 
    11 struct Edge{
    12     int to, next;
    13 }edge[mx];
    14 int iE, head[mx], d[mx], tr[mx << 2], fid;
    15 void addEdge(int u, int v){
    16     edge[iE].to = v; edge[iE].next = head[u]; head[u] = iE++;
    17 }
    18 
    19 void cnt(int l, int r, int now){
    20     if (r <= fid){ opt += tr[now]; return; }
    21     int mid = l + r >> 1;
    22     if (fid <= mid) return cnt(l, mid, now << 1);
    23     opt += tr[now << 1]; return cnt(mid + 1, r, now << 1 | 1);
    24 }
    25 void sub(int l, int r, int now){
    26     --tr[now];
    27     if (l == r) return;
    28     int mid = l + r >> 1;
    29     if (fid <= mid) return sub(l, mid, now << 1);
    30     return sub(mid + 1, r, now << 1 | 1);
    31 }
    32 void add(int l, int r, int now){
    33     ++tr[now];
    34     if (l == r) return;
    35     int mid = l + r >> 1;
    36     if (fid <= mid) return add(l, mid, now << 1);
    37     return add(mid + 1, r, now << 1 | 1);
    38 }
    39 
    40 void DFS(int now){
    41     int u;
    42     LL temp;
    43     if (data[now] == 0 || (temp = k / data[now]) >= dMP[n]) fid = n;
    44     else fid = std::upper_bound(dMP + 1, dMP + 1 + n, temp) - dMP - 1;
    45     if (fid) cnt(1, n, 1);
    46     fid = mp[data[now]]; add(1, n, 1);
    47     for (u = head[now]; ~u; u = edge[u].next) DFS(edge[u].to);
    48     fid = mp[data[now]]; sub(1, n, 1);
    49 }
    50 
    51 int main(){
    52     int t, i, u, v;
    53     scanf("%d", &t);
    54     while (t--){
    55         mp.clear(); memset(tr, 0, sizeof(tr));
    56         scanf("%d%I64d", &n, &k);
    57         for (i = 1; i <= n; ++i) scanf("%I64d", &data[i]);
    58         memcpy(dMP, data, sizeof(data));
    59         std::sort(dMP + 1, dMP + n + 1);
    60         for (i = 1; i <= n; ++i) mp[dMP[i]] = i;
    61 
    62         memset(head, -1, sizeof(head)); memset(d, 0, sizeof(d));
    63         iE = 0;
    64         for (i = 1; i < n; ++i){
    65             scanf("%d%d", &u, &v);
    66             addEdge(u, v); ++d[v];
    67         }
    68 
    69         for (i = 1; d[i]; ++i);
    70         opt = 0; DFS(i);
    71         printf("%I64d
    ", opt);
    72     }
    73     return 0;
    74 }


     

     

  • 相关阅读:
    堆排序
    深入理解创建类设计模式(Creational Patterns)
    (Head First)设计模式基础
    SpringMVC中的适配器模式应用
    软工团队任务
    visio画UML用例图
    安卓架构设计
    结对项目编程之代码进展
    工大助手(爬虫——查成绩部分)
    设计模式
  • 原文地址:https://www.cnblogs.com/Simon-X/p/5883563.html
Copyright © 2011-2022 走看看