zoukankan      html  css  js  c++  java
  • 4445: [Scoi2015]小凸想跑步 半平面交

    题目大意:

    http://www.lydsy.com/JudgeOnline/problem.php?id=4445

    题解:

    设点坐标,利用叉积可以解出当p坐标为((x_p,y_p))时,与边i--(i+1)构成的三角形面积为

    [(y_i - y_{i+1})x_p+(x_{i+1} - x_i)y_p+(x_iy_{i+1}-x_{i+1}y_i) ]

    我们又知道三角形(0 -- 1 -- (p))是最小的,所以我们列出不等式后移项变号得

    [(y_0-y_1-y_i+y_{i+1})x_p+(x_1-x_0-x_{i+1}+x_i)y_p+(x_0y_1-x_1y_0-x_iy_{i+1}+x_{i+1}y_i) < 0 ]

    我们发现这是一个(ax^2 + bx + c < 0)的形式
    所以我们就可以使用数学上的线性规划来解决问题
    当然在OI里就可以写半平面交了
    不要忘记还应限制这个点在多边形中.

    Code

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    inline void read(int &x){
    	x=0;char ch;bool flag = false;
    	while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
    	while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
    }
    inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
    inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
    const int maxn = 110010;
    const double eps = 1e-9;
    inline int dcmp(const double &x){
    	if(x < eps && x > -eps) return 0;
    	return x > 0 ? 1 : -1;
    }
    struct Point{
    	double x,y;
    	Point(){}
    	Point(const double &a,const double &b){
    		x=a;y=b;
    	}
    };
    typedef Point Vector;
    Vector operator + (const Vector &a,const Vector &b){
    	return Vector(a.x+b.x,a.y+b.y);
    }
    Vector operator - (const Vector &a,const Vector &b){
    	return Vector(a.x-b.x,a.y-b.y);
    }
    Vector operator * (const Vector &a,const double &b){
    	return Vector(a.x*b,a.y*b);
    }
    double cross(const Vector &a,const Vector &b){
    	return a.x*b.y - a.y*b.x;
    }
    struct line{
    	Point p;
    	Vector v;
    	double alpha;
    	line(){}
    	line(const Point &a,const Point &b){
    		p = a;v = b;
    		alpha = atan2(v.y,v.x);
    	}
    };
    inline bool cmp(const line &a,const line &b){
    	return a.alpha < b.alpha;
    }
    inline Point lineInterion(const line &l1,const line &l2){
    	Vector u = l1.p - l2.p;
    	double t = cross(l2.v,u)/cross(l1.v,l2.v);
    	return l1.p + l1.v*t;
    }
    inline bool onLeft(const Point &p,const line &l){
    	return dcmp(cross(l.v,p-l.p)) > 0;
    }
    line lines[maxn<<2],q[maxn<<2];
    Point p[maxn<<2];int l,r;
    inline bool halfInterion(int n){
    	sort(lines+1,lines+n+1,cmp);
    	l = r = 1;q[1] = lines[1];
    	for(int i=2;i<=n;++i){
    		while(l < r && !onLeft(p[r-1],lines[i])) -- r;
    		while(l < r && !onLeft(p[l],lines[i]) ) ++ l;
    		if(dcmp(cross(q[r].v,lines[i].v)) == 0) 
    			q[r] = onLeft(q[r].p,lines[i]) ? q[r] : lines[i];
    		else q[++r] = lines[i];
    		if(l < r) p[r-1] = lineInterion(q[r],q[r-1]);
    	}
    	while(l < r && !onLeft(p[r-1],q[l])) -- r;
    	return (r-l) > 1;
    }
    double x[maxn],y[maxn];
    int main(){
    	int n;read(n);
    	int cnt = 0;
    	double total = .0;
    	for(int i=0;i<n;++i){
    		scanf("%lf%lf",&x[i],&y[i]);
    	}x[n] = x[0];y[n] = y[0];
    	for(int i=0;i<n;++i){
    		lines[++cnt] = line(Point(x[i],y[i]),Vector(x[i+1]-x[i],y[i+1]-y[i]));
    	}
    	for(int i=1;i<n-1;++i){
    		total += abs(cross(Point(x[i]-x[0],y[i]-y[0]),Point(x[i+1]-x[0],y[i+1]-y[0])));
    	}
    	for(int i=1;i<n;++i){
    		double a = y[0] - y[1] - y[i] + y[i+1];
    		double b = x[1] - x[0] - x[i+1] + x[i];
    		double c = x[0]*y[1] - x[1]*y[0] - x[i]*y[i+1] + x[i+1]*y[i];
    		Point p,v(-b,a);
    		if(dcmp(b) == 0) p = Point(-c/a,0.0);
    		else p = Point(0.0,-c/b);
    		lines[++cnt] = line(p,v);
    	}
    	bool flag = halfInterion(cnt);
    	if(!flag) return puts("0.000");
    	double ans = .0;p[r] = lineInterion(q[l],q[r]);
    	for(int i=l+1;i<r;++i){
    		ans += abs(cross(p[i]-p[l],p[i+1]-p[l]));
    	}
    	printf("%.4lf
    ",ans/total);
    	getchar();getchar();
    	return 0;
    }
      
    
  • 相关阅读:
    canvas 平移&缩放
    html + css + jquery实现简单的进度条实例
    jQuery Layer mobile 弹出层
    jQuery-全屏滚动插件【fullPage.js】API 使用方法总结
    Hive:select count(distinct)优化以及hive.groupby.skewindata
    Spark Application、Driver、Job、stage、task
    Spark 参数说明
    Xgboost小结与调参
    梯度下降算法过程详细解读
    机器学习杂记
  • 原文地址:https://www.cnblogs.com/Skyminer/p/6445988.html
Copyright © 2011-2022 走看看