zoukankan      html  css  js  c++  java
  • The Best Peak Shape

    In many research areas, one important target of analyzing data is to find the best "peak shape" out of a huge amount of raw data full of noises. A "peak shape" of length L is an ordered sequence of L numbers { D1​​, ⋯, DL​​ } satisfying that there exists an index i (1) such that D1​​<<Di1​​<Di​​>Di+1​​>>DL​​.

    Now given N input numbers ordered by their indices, you may remove some of them to keep the rest of the numbers in a peak shape. The best peak shape is the longest sub-sequence that forms a peak shape. If there is a tie, then the most symmetric (meaning that the difference of the lengths of the increasing and the decreasing sub-sequences is minimized) one will be chosen.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives an integer N (3). Then N integers are given in the next line, separated by spaces. All the integers are in [.

    Output Specification:

    For each case, print in a line the length of the best peak shape, the index (starts from 1) and the value of the peak number. If the solution does not exist, simply print "No peak shape" in a line. The judge's input guarantees the uniqueness of the output.

    Sample Input1:

    20
    1 3 0 8 5 -2 29 20 20 4 10 4 7 25 18 6 17 16 2 -1
    
     

    Sample Output1:

    10 14 25
    
     

    Sample Input2:

    5
    -1 3 8 10 20
    
     

    Sample Output2:

    No peak shape
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 int main()
     4 {
     5 //    freopen("data.txt","r",stdin);
     6     int n,k,x;
     7     int msum=0,mmin=99999;
     8     scanf("%d",&n);
     9     vector<pair<int,int> > v(n,make_pair(0,0));
    10     vector<int> vm;
    11     for(auto& i:v)
    12     {
    13         scanf("%d",&x);
    14         i.first=x;
    15         if(vm.empty())
    16         vm.emplace_back(x);
    17         else
    18         {
    19             if(x>vm.back())
    20             {
    21                 vm.emplace_back(x);
    22                 i.second=vm.size()-1;
    23             }
    24             else
    25             for(int j=vm.size()-2;;--j)
    26             {
    27                 if(x>vm[j])
    28                 {
    29                     i.second=j+1;
    30                     if(x<vm[j+1])
    31                     vm[j+1]=x;
    32                     break;
    33                 }
    34                 if(j<0)
    35                 {
    36                     i.second=0;
    37                     if(x<vm[0])
    38                     vm[0]=x;
    39                     break;
    40                 }
    41             }
    42         }
    43     }
    44     vm.clear();
    45     x=0;
    46     for(int i=v.size()-1;i>-1;--i)
    47     {
    48         int p;
    49         if(vm.empty())
    50         {
    51             vm.emplace_back(v[i].first);
    52             p=0;
    53         }
    54         else
    55         {
    56             if(v[i].first>vm.back())
    57             {
    58                 vm.emplace_back(v[i].first);
    59                 p=vm.size()-1;
    60             }
    61             else
    62             for(int j=vm.size()-2;;--j)
    63             {
    64                 if(v[i].first>vm[j])
    65                 {
    66                     p=j+1;
    67                     if(v[i].first<vm[j+1])
    68                     vm[j+1]=v[i].first;
    69                     break;
    70                 }
    71                 if(j<0)
    72                 {
    73                     p=0;
    74                     if(v[i].first<vm[0])
    75                     vm[0]=v[i].first;
    76                     break;
    77                 }
    78             }
    79         }
    80         if(p+v[i].second>msum)
    81         {
    82             msum=p+v[i].second;
    83             mmin=abs(p-v[i].second);
    84             x=i;
    85         }
    86         else if(p+v[i].second==msum)
    87         {
    88             if(mmin>abs(p-v[i].second))
    89             {
    90                 mmin=abs(p-v[i].second);
    91                 x=i;
    92             }
    93         }
    94     }
    95     if(x==v.size()-1||x==0)
    96     printf("No peak shape");
    97     else
    98     printf("%d %d %d",msum+1,x+1,v[x].first);
    99 }
    诚者,君子之所守也。
  • 相关阅读:
    SQL Server 实现Split函数
    15.java设计模式之访问者模式
    14.java设计模式之命令模式
    13.java设计模式之模板模式
    12.java设计模式之代理模式
    11.java设计模式之享元模式
    10.java设计模式之外观模式
    9.java设计模式之组合模式
    8.java设计模式之装饰者模式
    7.java设计模式之桥接模式
  • 原文地址:https://www.cnblogs.com/SkystarX/p/12285782.html
Copyright © 2011-2022 走看看