zoukankan      html  css  js  c++  java
  • HDU1258Sum It Up

    Sum It Up

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3129    Accepted Submission(s): 1578

    Problem Description
    Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.
     
    Input
    The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.
     
    Output
    For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.
     
    Sample Input
    4 6 4 3 2 2 1 1 5 3 2 1 1 400 12 50 50 50 50 50 50 25 25 25 25 25 25 0 0
     
    Sample Output
    Sums of 4: 4 3+1 2+2 2+1+1 Sums of 5: NONE Sums of 400: 50+50+50+50+50+50+25+25+25+25 50+50+50+50+50+25+25+25+25+25+25
     
    Source
     
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <cstdlib>
    #include <algorithm>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <cassert>
    #include <set>
    #include <sstream>
    #include <map>
    using namespace std ;
    #ifdef DeBUG
    #define bug assert
    #else
    #define bug //
    #endif
    #define zero {0}
    #define INF 2000000000
    #define eps 1e-6
    int answer[20];
    int data[20];
    int _flag;
    int n;
    int t;
    int k;
    void DFS(int pos,int sum)//对于搜索一堆数相加为某个值的DFS 
    {
        if(!sum)
        {
            cout<<answer[0];
            _flag=true;
            for(int j=1;j<k;j++)
            {
                cout<<"+"<<answer[j];
            }
            cout<<endl;
            return ;
        }
        if(pos>=n||sum<0)
        {
            return ;
        }
        else
        {
            for(int j=pos;j<n;j++)
            {
                if(j==pos||data[j]!=data[j-1])//去掉则所有的组合就都出来了 
                {
                    answer[k++]=data[j];
                    DFS(j+1,sum-data[j]);
                    k--;
                }
            }
            return ;
        }
    }
    int main()
    {
        #ifdef DeBUG
            freopen("C:\Users\Sky\Desktop\1.in","r",stdin);
        #endif
        
    
        while(scanf("%d%d",&t,&n),t,n)
        {
            for(int i=0;i<n;i++)
            scanf("%d",&data[i]);
            _flag=false;
            k=0;
            printf("Sums of %d:
    ",t);
            DFS(0,t);
            if(!_flag)
            printf("NONE
    ");
        }
        return 0;
    }
    View Code
  • 相关阅读:
    学习:类和对象——继承
    学习:类和对象——运算符重载
    域权限维持:Skeleton Key
    域权限维持:SSP密码记录
    学习:类和对象——友元
    学习:类和对象——对象模型和this指针
    学习:类和对象——静态成员变量和函数
    学习:类和对象——初始化列表和内部类
    学习:类和对象——深拷贝和浅拷贝
    二维数组中的查找
  • 原文地址:https://www.cnblogs.com/Skyxj/p/3257744.html
Copyright © 2011-2022 走看看