zoukankan      html  css  js  c++  java
  • 组合计数

    minmax容斥:

    用于求解(K)大值的期望,((maxRightarrow min))

    [E(kthmax(S))=sum_{Tsubseteq S}(-1)^{|T|-k} imes {|T|-1choose k - 1} imes E(min(T)) ]

    特殊的,当(K = 1)

    [E(max(S))=sum_{Tsubseteq S}(-1)^{|T|-1} imes E(min(T)) ]

    (minmax)交换也成立。但是如果求(kmin)而且(min)好求,(max)不好求,则需变为((Sum + 1 - k)max)求解。

    HAOI
    HDU4624(minmax&&容斥套路2)

    期望的线性性:

    [E(X+Y)=E(X)+E(Y) ]

    组合数公式:

    [{{-r}choose {y}}=(-1)^y imes {r+y-1choose y} ]

    [{nchoose m}=frac{n imes(n-1) imes(n-2) imesdots imes(n-m+1)}{m!}(nin Z) ]

    [{n+mchoose k}=sum_{i=0}^{k}{nchoose i} imes{mchoose k-i} ]

    [sum_{k=0}^{n}{nchoose k}^2={2nchoose n} ]

    [sum_{r=0}^{n}{nchoose r}=2^n ]

    [sum_{r=0}^{k}{n+r-1choose r}={n+kchoose k} ]

    [sum_{i=1}^n i imes {nchoose i} imes x^i=n imes (1+x)^{n-1} ]

    [{nchoose m}\%2==1 <=>(n&m)==m ]

    [{nchoose m}=prod_{i=1}^k frac{n+1-i}{i} ]

    [sum_{i=1}^n{ichoose m}={n+1choose m+1} ]

    [sum_{i=1}^m{nchoose i}=F(n,m) ]

    [{egin{cases}{F(i,i)=1}\{F(i,j+1)=F(i,j)+{ichoose j+1}}\{F(i+1,j)=2 imes F(i,j)-{ichoose j}}end{cases}} ]

    [F(i,j)=F(i\%p,p-1) imes F(frac{n}{p},frac{k}{p}-1)+{frac{k}{p}choose frac{n}{p}} imes F(n\%p,k\%p) ]

    [-2ij={ichoose 2}+{jchoose 2}-{i+jchoose 2} ]

    套路:

    (1.)利用(dp)(背包)合并容斥系数((1,-1))(把某几项放到状态上,其他的求和)。(有上界的划分数类问题)
    (2.)套路1+神奇思路ZOJ4064
    (3.)
    (4.)CF932 G
    (5.)CF348 D
    (LGV~lemma)定理:n个起点,n个终点,一一对应,求互不相交的路径有多少种:

    [ans=determinant left[ egin{matrix} e(x_1,y_1) & e(x_1,y_2) & cdots & e(x_1,y_n) \ e(x_2,y_1) & e(x_2,y_2) & cdots & e(x_2,y_n) \ vdots &vdots &ddots &vdots \ e(x_n,y_1) & e(x_n,y_2) & cdots & e(x_n,y_n)end{matrix} ight] ]

    (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~e(x,y)=x)(y)的合法路径条数
    (6.)(LGV~lemma):n维空间,从((x_1,x_2dots x_n))走到((y_1,y_2dots y_n))方案数$$=(sum y_i-sum x_i)! imes e$$

    [e=determinant left[ egin{matrix} frac{1}{(y_1-x_1)!} & frac{1}{(y_1-x_2)!} & cdots & frac{1}{(y_1-x_n)!} \ frac{1}{(y_2-x_1)!} & frac{1}{(y_2-x_2)!} & cdots & frac{1}{(y_2-x_n)!} \ vdots &vdots &ddots &vdots \ frac{1}{(y_n-x_1)!} & frac{1}{(y_n-x_2)!} & cdots & frac{1}{(y_n-x_n)!} end{matrix} ight] ]

    (7.)半容斥:无向连通图个数=总数-不联通的图的个数(基准点计数)传送门,一类套路CF53E Dead Ends
    (8.)对于递推方程:$$f(i)=a imes f(i-p)+b imes f(i-q)$$
    可以理解成每次选择花费(a)的代价走(p)步,或者花费(b)的代价走(q)步那么$$f(n)=sum_{i=0}^{lfloor frac{n}{p} floor} {i+frac{(n-i imes p)}{q}choose i} imes a^i imes b^{frac{(n-i imes p)}{q}}~~~~~~~~~~~(q|(n-i imes p))$$PE 427(q=1),枚举(p),复杂度(O(n^2) Rightarrow O(nlogn))
    由此可推

    [sum_{i=0}^{lfloor frac n k floor} {n-ichoose i}<=>f(n)=f(n-1)+f(n-k) ]

    (10.)考虑组合意义:

    [x^k=sum_{i=0}^{x~or~k}{xchoose i} imes i! imes S(k,i) ]

  • 相关阅读:
    eclipse如何设置高亮代码的背景色,比如选中某个单词,高亮所有的
    javascript弹层
    click只能点击一次
    eclipse创建文件夹河包
    maven工程如何引用css和js文件
    maven-parent的pom.xml配置
    pom.xml设置maven的编码方式
    springmvc搭建环境时报No mapping found for HTTP request with URI [/exam3/welcome] in DispatcherServlet with name 'spring2'
    sso的实现
    C#中,重新排列panel中的按钮
  • 原文地址:https://www.cnblogs.com/Smeow/p/10582615.html
Copyright © 2011-2022 走看看