zoukankan      html  css  js  c++  java
  • CF1515H

    代码是半成品,调自闭了。

    大概是一个暴力思路(不保证正确,复杂度比较劣,不保证能过(本来想试试,然后调自闭了),没写完,纯口嗨,错了不负责),学会了正解再来补好了。


    考虑暴力,我们将二进制位拆成前 (w-cnt) 位和后 (cnt) 位。

    这里只讨论 OR 和 XOR 的情况,AND 和 OR 类似。

    我们考虑枚举前 (w-cnt) 位,先考虑 XOR:

    散块的部分我们暴力,对于整块我们进行分类:

    1. 空块。
    2. 非空块。

    对于 XOR 而言,(i o j)(j o i),于是相当于 swap(如果都被操作)

    否则为 (i o j)

    (i,j) 均非空,则暴力,此时至少会减少一个非空块。

    如果 (j) 为空,则直接将 (j) 这个块设为 (i) 即可。

    显然一次操作最多增加两个非空块(由散块提供)

    对于其中第二类情况,我们做 (mathcal O(2^{cnt})) 的暴力即可,复杂度显然为 (mathcal O(q(2^{cnt}+2^{w-cnt}))),然后我们对于一个整块打一个 XOR 的标记即可。

    对于 OR,我们仍然类似处理,现在考虑如何处理 OR 的标记。

    我们考虑一个 sub pro,维护集合,支持 OR 和 XOR,每次操作后输出集合大小,(qle 10^7,wle 10)

    可以这样做,我们维护一个长为 w 的数组,表示每个位有没有被 OR 1 过,每次如果增加了一个 OR 1 的位,我们就暴力重构,否则我们维护一个先 or 上 Z 再 xor 上 X 的标记即可。复杂度显然为 (mathcal O(q+w2^w))

    于是对于 OR,我们仍然是散块暴力,非空 & 非空暴力,非空到空的类型则直接做上述算法即可。

    显然每次重构,会增加 (cnt) 个标记,复杂度为 (mathcal O(q(cnt2^{cnt}+2^{w-cnt})))

    可以在 (mathcal O(qsqrt{w2^w})) 的复杂度解决本题。


    (Code:)

    想欣赏 6kb 代码不能过手造样例吗?
    
  • 相关阅读:
    C++ const用于iterator
    C++实现类似python中的字符串split函数
    简单地解释overwrite
    ubuntu16.04 新安装的系统启动ssh服务
    强化学习7日打卡营-世界冠军带你从零实践--基于表格型方法的 RL
    spark-遇到问题小结
    Spark 读写hive 表
    spark-shell 显示乱码
    机器学习-GBDT和XGboost
    链表
  • 原文地址:https://www.cnblogs.com/Soulist/p/14728429.html
Copyright © 2011-2022 走看看