zoukankan      html  css  js  c++  java
  • BZOJ.4402.Claris的剑(组合 计数)

    BZOJ

    因为是本质不同,所以考虑以最小字典序计数。

    假设序列最大值为(m),那么序列有这两种情况:

    1. (1 (1 2 1 2...) 2 (3 2 3 2...) 3 (4 3 4 3...) ... m)
    2. (1 (1 2 1 2...) 2 (3 2 3 2...) 3 (4 3 4 3...) ... m m-1)

    如果序列长度为(n),那么可以看做我们有(frac{n-m}{2})个相同的球,将它们放进(m-1)个盒子,允许盒子有空的方案数,即(C_{n+m-1}^{m-1})
    这里球的个数取(lfloorfrac{n-m}{2} floor)即可(第二种情况取(lfloorfrac{n-m-1}{2} floor))。如果多出来一个,那把它放到两种序列的后面仍是不同的。

    (n,m)都是不确定的。因为(sum_{i=0}^nC_{i+m-1}^{m-1}=C_{n+m-1}^{m-1}),所以枚举最大值(m),就可以(O(m))得到答案啦。

    预处理到(2e6)就可以啊,不需要(4e6),因为(frac{n-m}{2}+m=frac{n+m}{2})。。

    //16448kb	1008ms
    #include <cstdio>
    #include <algorithm>
    #define mod 1000000007
    typedef long long LL;
    const int N=2e6+5;
    
    int fac[N],ifac[N];
    
    #define F(n,m) (1ll*fac[(n)+(m)-1]*ifac[n]%mod*ifac[(m)-1]%mod)
    inline int FP(int x,int k)
    {
    	int t=1;
    	for(; k; k>>=1,x=1ll*x*x%mod)
    		if(k&1) t=1ll*t*x%mod;
    	return t;
    }
    
    int main()
    {
    	int n,m; scanf("%d%d",&n,&m);
    	fac[0]=fac[1]=1; int lim=n+m>>1;
    	for(int i=2; i<=lim; ++i) fac[i]=1ll*fac[i-1]*i%mod;
    	ifac[lim]=FP(fac[lim],mod-2);
    	for(int i=lim-1; ~i; --i) ifac[i]=1ll*ifac[i+1]*(i+1)%mod;
    
    	LL ans=n&&m;//m=1特判下 
    	for(int i=2,l=std::min(n,m); i<=l; ++i)
    	{
    		ans+=F((n-i)/2,i);
    		if(i+1<=n) ans+=F((n-i-1)/2,i);
    	}
    	printf("%lld
    ",ans%mod);
    
    	return 0;
    }
    //	int i;//突然闲的 
    //	for(i=2; i+3<=lim; i+=4)
    //		fac[i]=1ll*fac[i-1]*i%mod,
    //		fac[i+1]=1ll*fac[i]*(i+1)%mod,
    //		fac[i+2]=1ll*fac[i+1]*(i+2)%mod,
    //		fac[i+3]=1ll*fac[i+2]*(i+3)%mod;
    //	for(; i<=lim; ++i) fac[i]=1ll*fac[i-1]*i%mod;
    //	ifac[lim]=FP(fac[lim],mod-2);
    //	for(i=lim-1; i-3>=0; i-=4)
    //		ifac[i]=1ll*ifac[i+1]*(i+1)%mod,
    //		ifac[i-1]=1ll*ifac[i]*(i)%mod,
    //		ifac[i-2]=1ll*ifac[i-1]*(i-1)%mod,
    //		ifac[i-3]=1ll*ifac[i-2]*(i-2)%mod;
    //	for(; i>=0; --i) ifac[i]=1ll*ifac[i+1]*(i+1)%mod;
    
  • 相关阅读:
    scanf与scanf_s的区别
    PAT 1041 考试座位号
    PAT1018 锤子剪刀布
    Cookie
    JSP--原理
    多线程练习题
    Java线程--线程的同步与锁
    有关toString()和println(Object)
    Java Web请求和响应机制
    IO流
  • 原文地址:https://www.cnblogs.com/SovietPower/p/10117698.html
Copyright © 2011-2022 走看看