(LIS)。。经典模型?
令(f_i)表示以(i)结尾的(LIS)长度。
如果(f_i=1),连边((S,i,INF));如果(f_i=maxlimits_{j=1}^n{f_j}),连边((i,T,INF));如果(f_i=f_j+1, j<i),连边((j,i,INF))。
这样使(LIS)长度至少减少(1),就是删掉图中的一些点,使得(S,T)不连通。
拆点,把(i)拆成(X_i,Y_i),连边((X_i,Y_i,cost_i))。(j o i)的连边就连(Y_j o X_i)。
求最小割就可以得到最小花费了。
对于(C_i)字典序最小的方案:
把点按照(C_i)从小到大排序,我们要依次判断边((X_i,Y_i))是否可以在最小割上。
边((u,v))在最小割上当且仅当,这条边满流,且不能再增广。
对于后一个条件就判断以(u)做源点,(v)做汇点,是否存在增广路径就可以了(从(u)到(v) (BFS))。
然后如果选择了边((u,v)),那经过((u,v))的路径上的其它边都不能再选。把边((u,v))的流量退回去,就可以使这些边一定不在最小割上了。
退流具体就是,以(u)做源点,(S)做汇点,流(cap_{(u,v)})的流量;再以(T)做源点,(v)做汇点,流(cap_{(u,v)})的流量。((S,T)是原图的源汇点)
//16392kb 3816ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=1407,M=705*703*2,INF=0x3f3f3f3f;
int src,des,rk[N],Enum,H[N],nxt[M],to[M],fr[M],cap[M],lev[N],pre[N],dis[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v,int w)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0;
}
inline bool cmp(int a,int b)
{
return rk[a]<rk[b];
}
bool BFS(int S,int T)
{
static int q[N];
const int lim=des+1;
for(int i=0; i<=des; ++i) lev[i]=lim;
int h=0,t=1; q[0]=T, lev[T]=0;
while(h<t)
{
int x=q[h++];
for(int i=H[x]; i; i=nxt[i])
if(lev[to[i]]==lim && cap[i^1])
lev[to[i]]=lev[x]+1, q[t++]=to[i];
}
return lev[S]<=des;
}
inline int Augment(int S,int T,int flow)
{
for(int i=T; i!=S; i=fr[pre[i]])
flow=std::min(flow,cap[pre[i]]);
for(int i=T; i!=S; i=fr[pre[i]])
cap[pre[i]]-=flow, cap[pre[i]^1]+=flow;
return flow;
}
int ISAP(int S,int T,int flow)
{
static int num[N],cur[N];
if(!BFS(S,T)) return 0;
memset(num,0,des+2<<2);
for(int i=0; i<=des; ++i) ++num[lev[i]],cur[i]=H[i];
int res=0,x=S;
while(lev[S]<=des)
{
if(x==T) x=S, res+=Augment(S,T,flow);
bool can=0;
for(int i=cur[x]; i; i=nxt[i])
if(lev[to[i]]==lev[x]-1 && cap[i])
{
can=1, cur[x]=i, pre[x=to[i]]=i;
break;
}
if(!can)
{
int mn=des;
for(int i=H[x]; i; i=nxt[i])
if(cap[i]) mn=std::min(mn,lev[to[i]]);
if(!--num[lev[x]]) break;
++num[lev[x]=mn+1], cur[x]=H[x];
if(x!=S) x=fr[pre[x]];
}
}
return res;
}
int main()
{
static int A[N],cost[N],f[N],B[N],e[N],Ans[N];
for(int T=read(); T--; )
{
const int n=read(); src=0, des=n<<1|1;
Enum=1, memset(H,0,des+1<<2);
for(int i=1; i<=n; ++i) A[i]=read();
for(int i=1; i<=n; ++i) cost[i]=read();
for(int i=1; i<=n; ++i) rk[i]=read();
int mx=0;
for(int i=1; i<=n; ++i)
{
int tmp=0;
for(int j=1; j<i; ++j) A[i]>A[j]&&(tmp=std::max(tmp,f[j]));
mx=std::max(mx,f[i]=tmp+1);
}
for(int i=1; i<=n; AE(i,i+n,cost[i]),e[i++]=Enum)
if(f[i]!=1)
{
if(f[i]==mx) AE(i+n,des,INF);
for(int j=1; j<i; ++j) if(f[j]+1==f[i] && A[j]<A[i]) AE(j+n,i,INF);
}
else AE(0,i,INF);
int tot=ISAP(0,des,INF);
printf("%d ",tot);
//Subtask2
for(int i=1; i<=n; ++i) B[i]=i;
std::sort(B+1,B+1+n,cmp); int cnt=0;
for(int i=1,x=B[1],ex=e[x]; i<=n&&tot; x=B[++i],ex=e[x])
if(!cap[ex^1] && !BFS(x,x+n))
tot-=cap[ex], Ans[++cnt]=x, ISAP(x,src,cap[ex]), ISAP(des,x+n,cap[ex]), cap[ex]=cap[ex^1]=0;
std::sort(Ans+1,Ans+1+cnt), printf("%d
",cnt);
for(int i=1; i<=cnt; ++i) printf("%d%c",Ans[i],"
"[i==cnt]);
}
return 0;
}