zoukankan      html  css  js  c++  java
  • #排列组合#C 模拟比赛

    题目


    分析

    由于每个选手的得分独立,考虑按照选手的最高得分降序排序
    如果当前枚举到选手(i),首先记录(o_i)表示在选手(i)之前最小得分不低于选手(i)的最高得分
    (必选,等于必选当且仅当编号比选手(i)的原编号小)
    然后再枚举从这些必选的当中选择的数量(j),那么统计的答案即为(C_{o_i}^{j} imes C_{i-1-o_i}^{t-j-1})
    注意枚举的(k)也有限制条件


    代码

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    #define rr register
    using namespace std;
    const int N = 51;
    typedef long long lll;
    struct rec {
        int rk, mn, mx;
    } b[N];
    int m, n, a[N], S, T;
    lll c[N][N], ans;
    inline signed iut() {
        rr int ans = 0, f = 1;
        rr char c = getchar();
        while (!isdigit(c)) f = (c == '-') ? -f : f, c = getchar();
        while (isdigit(c)) ans = (ans << 3) + (ans << 1) + (c ^ 48), c = getchar();
        return ans * f;
    }
    inline signed min(int a, int b) { return a < b ? a : b; }
    inline signed max(int a, int b) { return a > b ? a : b; }
    bool cmp(rec x, rec y) { return x.mx != y.mx ? x.mx > y.mx : x.rk < y.rk; }
    signed main() {
        freopen("ctsc.in", "r", stdin);
        freopen("ctsc.out", "w", stdout);
        m = iut(), c[0][0] = 1;
        for (rr int i = 1; i <= m; ++i) a[i] = iut();
        n = iut();
        for (rr int i = 1; i <= n; ++i) c[i][0] = 1;
        for (rr int i = 1; i <= n; ++i)
            for (rr int j = 1; j <= i; ++j) c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
        for (rr int i = 1; i <= n; ++i) {
            rr int MN = 0, MX = 0;
            for (rr int j = 1; j <= m; ++j) {
                rr char c = getchar();
                while (c != 'N' && c != 'Y') c = getchar();
                if (c == 'N')
                    continue;
                if (a[j] < 0)
                    MX -= a[j];
                else
                    MN += a[j], MX += a[j];
            }
            b[i] = (rec){ i, MN, MX };
        }
        S = iut(), T = iut(), sort(b + 1, b + 1 + n, cmp);
        for (rr int i = 1; i <= n; ++i) {
            rr int o = 0;
            for (rr int j = 1; j < i; ++j)
                if (b[j].mn > b[i].mx || (b[j].mn == b[i].mx && b[j].rk < b[i].rk))
                    ++o;
            if (o >= S)
                continue;//必选超过S人一定不行
            for (rr int j = max(T + o - S, 0); j <= min(o, T - 1); ++j) ans += c[o][j] * c[i - 1 - o][T - j - 1];//上界很容易理解,下界因为oi-j>s-t说明我没有的必选超过前s个没有被选择的个数说明不合法
        }
        return !printf("%lld", ans);
    }
    
  • 相关阅读:
    calico网络异常,不健康
    k8s部署xxl-job-admin
    K8S
    二进制部署k8s高可用
    kubernetes集群部署redis5.0.6单机版
    K8s之MySQL实现数据持久化
    Kubernetes网络
    Oracle数据表锁死的解决办法
    查询各个表的详情
    Oracle-查看所有表、字段以及表注释和字段注释
  • 原文地址:https://www.cnblogs.com/Spare-No-Effort/p/13810148.html
Copyright © 2011-2022 走看看