zoukankan      html  css  js  c++  java
  • flink sql 写 kudu

    Kudu 是现在比较火的一款存储引擎,集HDFS的顺序读和HBase的随机读于一身,非常适合物流网场景,刚刚到达的数据就马上要被终端用户使用访问到,未来还要做大规模的数据分析。

    kudu 适合的场景(以下内容来自网络):

    1. 适用于那些既有随机访问,也有批量数据扫描的复合场景
    2. CPU密集型的场景
    3. 使用了高性能的存储设备,包括使用更多的内存
    4. 要求支持数据更新,避免数据反复迁移的场景
    5. 支持跨地域的实时数据备份和查询

    最近感觉在批量读 hbase 上遇到了瓶颈,急需寻找新的解决方案,这是时候看到了 kudu,看了介绍,感觉非常适合我们的场景:物流网场景,设备上传的数据,需要实时查询,又需要对设备时间范围内的数据做批量分析。

    在把数据写到 kudu,目前 flink 还没有官方的 connector,只能使用第三方 bahir 提供的包,比较遗憾的是 bahir-flink 中 kudu 的 connector 还没有发布,目前只能自己在 github 下载 bahir-flink 的源代码自己编译(好消息是编译很简单)。

    bahir-flink : https://github.com/apache/bahir-flink/tree/master/flink-connector-kudu

    sqlSubmit 添加 flink-connector-kudu 依赖:

    <dependency>
        <groupId>org.apache.bahir</groupId>
        <artifactId>flink-connector-kudu_2.11</artifactId>
        <version>1.1-SNAPSHOT</version>
    </dependency>

    sql 如下:

    -- kafka source
    drop table if exists user_log;
    CREATE TABLE user_log (
      user_id VARCHAR
      ,item_id VARCHAR
      ,category_id VARCHAR
      ,behavior INT
      ,ts TIMESTAMP(3)
      ,process_time as proctime()
      , WATERMARK FOR ts AS ts
    ) WITH (
      'connector' = 'kafka'
      ,'topic' = 'user_behavior'
      ,'properties.bootstrap.servers' = 'venn:9092'
      ,'properties.group.id' = 'user_log_x'
      ,'scan.startup.mode' = 'group-offsets'
      ,'format' = 'json'
    );
    
    -- kafka sink
    drop table if exists user_log_sink;
    CREATE TABLE user_log_sink (
      user_id STRING
      ,item_id STRING
      ,category_id STRING
      ,ts  TIMESTAMP(3)
    ) WITH (
      'connector.type' = 'kudu'
      ,'kudu.masters' = 'venn:7051,venn:7151,venn:7251'
      ,'kudu.table' = 'user_log'
      ,'kudu.hash-columns' = 'user_id'
      ,'kudu.primary-key-columns' = 'user_id'
      ,'kudu.max-buffer-size' = '5000'
      ,'kudu.flush-interval' = '1000'
    );
    
    -- insert
    insert into user_log_sink
    select user_id, item_id, category_id,ts
    from user_log;

    查看数据:

    java api 读取数据

    private void queryData() throws KuduException {
        KuduClient client = new KuduClient.KuduClientBuilder(KUDU_MASTER).build();
    
        KuduTable table = client.openTable(TABLE_NAME);
    
        Schema schema = table.getSchema();
        KuduScanner scanner = null;
        try {
            List<String> projectColumn = new ArrayList<>();
            projectColumn.add("user_id");
            projectColumn.add("item_id");
            projectColumn.add("category_id");
            projectColumn.add("ts");
    
            KuduPredicate lowPredicate = KuduPredicate.newComparisonPredicate(schema.getColumn("user_id"), KuduPredicate.ComparisonOp.GREATER_EQUAL, " ");
            KuduPredicate upPredicate = KuduPredicate.newComparisonPredicate(schema.getColumn("user_id"), KuduPredicate.ComparisonOp.LESS_EQUAL, "~");
    
            scanner = client.newScannerBuilder(table)
                    .setProjectedColumnNames(projectColumn)
                    .addPredicate(lowPredicate)
                    .addPredicate(upPredicate)
                    .build();
    
            long start = System.currentTimeMillis();
            int count = 0;
            while (scanner.hasMoreRows()) {
                RowResultIterator results = scanner.nextRows();
                while (results.hasNext()) {
                    RowResult result = results.next();
                    StringBuilder builder = new StringBuilder();
                    List<ColumnSchema> list = result.getSchema().getColumns();
                    for (ColumnSchema schema1 : list) {
                        String columnName = schema1.getName();
                        Type columnType = schema1.getType();
    
                        switch (columnType) {
                            case STRING: {
                                String tmp = result.getString(columnName);
                                if (!result.isNull(columnName)) {
                                    builder.append(columnName + " : " + tmp).append(", ");
                                }
                                break;
                            }
                            case UNIXTIME_MICROS: {
                                if (!result.isNull(columnName)) {
                                    Timestamp ts = result.getTimestamp(columnName);
                                    builder.append(columnName + " : " + DateTimeUtil.formatMillis(ts.getTime(), DateTimeUtil.YYYY_MM_DD_HH_MM_SS));
                                }
                                break;
                            }
                            case INT8: {
                                if (!result.isNull(columnName)) {
                                    byte tmp = result.getByte(columnName);
                                    builder.append(columnName + " : " + tmp);
                                }
                                break;
                            }
                            default: {
                                builder.append(columnName + " : ");
                            }
                        }
                    }
    
                    System.out.println(builder.toString());
                    ++count;
                }
            }
            System.out.println("result count : " + count);
    
            long end = System.currentTimeMillis();
            System.out.println("cost : " + (end - start));
        } finally {
            if (scanner != null) {
                scanner.close();
            }
            client.shutdown();
        }
    
    }

    输出如下:

    user_id : user_id_9982, item_id : item_id_1, category_id : category_id_1, ts : 2021-04-16 16:14:45
    user_id : user_id_9986, item_id : item_id_9, category_id : category_id_9, ts : 2021-04-16 16:14:45
    user_id : user_id_9989, item_id : item_id_2, category_id : category_id_2, ts : 2021-04-16 16:14:45
    user_id : user_id_9991, item_id : item_id_8, category_id : category_id_8, ts : 2021-04-16 16:14:45
    user_id : user_id_9992, item_id : item_id_2, category_id : category_id_2, ts : 2021-04-16 16:14:45
    user_id : user_id_9994, item_id : item_id_3, category_id : category_id_3, ts : 2021-04-16 16:14:45
    user_id : user_id_9995, item_id : item_id_7, category_id : category_id_7, ts : 2021-04-16 16:14:45
    user_id : user_id_9999, item_id : item_id_7, category_id : category_id_7, ts : 2021-04-16 16:14:45
    result count : 65867
    cost : 863

    欢迎关注Flink菜鸟公众号,会不定期更新Flink(开发技术)相关的推文

     

  • 相关阅读:
    HTML5 meta最全使用手册
    CSS3实现开门动画
    angularJS学习资源最全汇总
    酷炫放大镜canvas实现
    完成评论功能
    从首页问答标题到问答详情页
    首页列表显示全部问答,完成问答详情页布局
    制作首页的显示列表。
    发布功能完成。
    登录之后更新导航
  • 原文地址:https://www.cnblogs.com/Springmoon-venn/p/14668119.html
Copyright © 2011-2022 走看看