zoukankan      html  css  js  c++  java
  • Covering(矩阵快速幂)

    Bob's school has a big playground, boys and girls always play games here after school. 

    To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets. 

    Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more. 

    He has infinite carpets with sizes of 1×21×2 and 2×12×1, and the size of the playground is 4×n4×n. 

    Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping? 

    Input

    There are no more than 5000 test cases. 

    Each test case only contains one positive integer n in a line. 

    1≤n≤10181≤n≤1018 

    Output

    For each test cases, output the answer mod 1000000007 in a line. 

    Sample Input

    1
    2

    Sample Output

    1
    5

    递推公式为F[N]=F[N-1]+5F[n-2]+F[n-3]-F[n-4];

    这个题有个坑点,就是在取模之后数值会变小,然后导致系数为-的给减的导致最后的值是-的

    这种问题我们的解法是在最后的结果+MOD再取模

    学到了

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #include<vector>
    #include<map>
    #include<cmath>
    #define MOD 1000000007
    const int maxn=1e5+5;
    typedef long long ll;
    using namespace std;
    struct mat
    {
      ll a[5][5];
    };
    mat  Mul(mat a,mat b)
    {
    	mat ans;
    	memset(ans.a,0,sizeof(ans.a));
    	for(int t=1;t<=4;t++)
    	{
    		for(int j=1;j<=4;j++)
    		{
    			for(int k=1;k<=4;k++)
    			{
    				ans.a[t][j]=(ans.a[t][j]+a.a[t][k]*b.a[k][j])%MOD;
    			}
    		}
    	}
    	return ans;
    
    }
    mat ans;
    ll quickpow(ll n)
    {
       mat res;
       memset(res.a,0,sizeof(res.a));
       res.a[1][1]=1;
       res.a[1][2]=5;
       res.a[1][3]=1;
       res.a[1][4]=-1;
       res.a[2][1]=1;
       res.a[3][2]=1;
       res.a[4][3]=1;
       while(n)
       {
       	if(n&1)
       	{
       		ans=Mul(res,ans);
    	}
    	res=Mul(res,res);
    	n>>=1;
       }
       return ans.a[1][1];
    }
    int main()
    {
    	ll n;
    	while(cin>>n)
    	{
    		
    		memset(ans.a,0,sizeof(ans.a));
    	    ans.a[1][1]=36;
    	    ans.a[2][1]=11;
    	    ans.a[3][1]=5;
    	    ans.a[4][1]=1;
    	    if(n==1)
    	    {
    	    	printf("1
    ");
    		}
    		else if(n==2)
    	    {
    	    	printf("5
    ");
    		}
    		else if(n==3)
    		{
    			printf("11
    ");
    		}
    		else if(n==4)
    		{
    			printf("36
    ");
    		}
    		else 
    		{
    			ll s=quickpow(n-4)+MOD;
    			printf("%lld
    ",(s)%MOD);
    		}
    		
    	}
    
       return 0;
    }
    
  • 相关阅读:
    论文笔记4
    论文笔记3
    论文笔记2
    论文笔记1
    论文笔记
    AFG与AWG的比较
    Linux下“有线线缆被拔出”问题的解决
    python生成excel格式座位表
    PythonTip--一马当先--bfs
    python pygame--倒计时
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/10781753.html
Copyright © 2011-2022 走看看