zoukankan      html  css  js  c++  java
  • Covering(矩阵快速幂)

    Bob's school has a big playground, boys and girls always play games here after school. 

    To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets. 

    Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more. 

    He has infinite carpets with sizes of 1×21×2 and 2×12×1, and the size of the playground is 4×n4×n. 

    Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping? 

    Input

    There are no more than 5000 test cases. 

    Each test case only contains one positive integer n in a line. 

    1≤n≤10181≤n≤1018 

    Output

    For each test cases, output the answer mod 1000000007 in a line. 

    Sample Input

    1
    2

    Sample Output

    1
    5

    递推公式为F[N]=F[N-1]+5F[n-2]+F[n-3]-F[n-4];

    这个题有个坑点,就是在取模之后数值会变小,然后导致系数为-的给减的导致最后的值是-的

    这种问题我们的解法是在最后的结果+MOD再取模

    学到了

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #include<set>
    #include<vector>
    #include<map>
    #include<cmath>
    #define MOD 1000000007
    const int maxn=1e5+5;
    typedef long long ll;
    using namespace std;
    struct mat
    {
      ll a[5][5];
    };
    mat  Mul(mat a,mat b)
    {
    	mat ans;
    	memset(ans.a,0,sizeof(ans.a));
    	for(int t=1;t<=4;t++)
    	{
    		for(int j=1;j<=4;j++)
    		{
    			for(int k=1;k<=4;k++)
    			{
    				ans.a[t][j]=(ans.a[t][j]+a.a[t][k]*b.a[k][j])%MOD;
    			}
    		}
    	}
    	return ans;
    
    }
    mat ans;
    ll quickpow(ll n)
    {
       mat res;
       memset(res.a,0,sizeof(res.a));
       res.a[1][1]=1;
       res.a[1][2]=5;
       res.a[1][3]=1;
       res.a[1][4]=-1;
       res.a[2][1]=1;
       res.a[3][2]=1;
       res.a[4][3]=1;
       while(n)
       {
       	if(n&1)
       	{
       		ans=Mul(res,ans);
    	}
    	res=Mul(res,res);
    	n>>=1;
       }
       return ans.a[1][1];
    }
    int main()
    {
    	ll n;
    	while(cin>>n)
    	{
    		
    		memset(ans.a,0,sizeof(ans.a));
    	    ans.a[1][1]=36;
    	    ans.a[2][1]=11;
    	    ans.a[3][1]=5;
    	    ans.a[4][1]=1;
    	    if(n==1)
    	    {
    	    	printf("1
    ");
    		}
    		else if(n==2)
    	    {
    	    	printf("5
    ");
    		}
    		else if(n==3)
    		{
    			printf("11
    ");
    		}
    		else if(n==4)
    		{
    			printf("36
    ");
    		}
    		else 
    		{
    			ll s=quickpow(n-4)+MOD;
    			printf("%lld
    ",(s)%MOD);
    		}
    		
    	}
    
       return 0;
    }
    
  • 相关阅读:
    Linux下分析某个进程CPU占用率高的原因
    Linux下查看某一进程所占用内存的方法
    jbd2导致系统IO使用率高问题
    Linux iotop命令详解
    1.Redis详解(一)------ redis的简介与安装
    Redis详解(十三)------ Redis布隆过滤器
    12.Redis详解(十二)------ 缓存穿透、缓存击穿、缓存雪崩
    面试问题总结
    算法与数据结构基础<二>----排序基础之插入排序法
    CarSim、Adams、Cruise和Simulink四款仿真软件的对比
  • 原文地址:https://www.cnblogs.com/Staceyacm/p/10781753.html
Copyright © 2011-2022 走看看