You are given three integers aa, bb and xx. Your task is to construct a binary string ssof length n=a+bn=a+b such that there are exactly aa zeroes, exactly bb ones and exactly xx indices ii (where 1≤i<n1≤i<n) such that si≠si+1si≠si+1. It is guaranteed that the answer always exists.
For example, for the string "01010" there are four indices ii such that 1≤i<n1≤i<n and si≠si+1si≠si+1 (i=1,2,3,4i=1,2,3,4). For the string "111001" there are two such indices ii (i=3,5i=3,5).
Recall that binary string is a non-empty sequence of characters where each character is either 0 or 1.
Input
The first line of the input contains three integers aa, bb and xx (1≤a,b≤100,1≤x<a+b)1≤a,b≤100,1≤x<a+b).
Output
Print only one string ss, where ss is any binary string satisfying conditions described above. It is guaranteed that the answer always exists.
Examples
Input
2 2 1
Output
1100
Input
3 3 3
Output
101100
Input
5 3 6
Output
01010100
题解:
根据0和1谁的数量大,确定从谁开始,然后n为奇数和偶数再分别判断即可
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{
int a,b,x,s;
int m,n;
cin>>a>>b>>x;
s=a+b;
if(a>b)
{
m=0;
n=1;
}
else
{
m=1;
n=0;
swap(a,b);
}
for(int i=0;i<x/2;i++) {cout<<m<<n;a--,b--;}
if(x%2==0){
while(b--) cout<<n;
while(a--) cout<<m;
}
else{
while(a--) cout<<m;
while(b--) cout<<n;
}
return 0;
}